
The
Digital Geographic Information

Exchange Standard
(DIGEST)

Part 2 - Annex C
VECTOR RELATIONAL FORMAT

Edition 2.1
September 2000

Produced and issued by the Digital Geographic Information Working Group (DGIWG)

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 1

Annex C
Vector Relational Format

Annex C - Contents page

C.1 GENERAL REQUIREMENTS..C-10
C.1.1 General ... C-10
C.1.2 Relationship Between VRF and Specific Products. C-10
C.1.3 VRF Hierarchy. .. C-11

C.2 DETAILED REQUIREMENTS... C-11
C.2.1 General. .. C-11
C.2.2 VRF Data Model. ... C-12

C.2.2.1 Data Organization.. C-12
C.2.2.1.1 Directory ... C-12
C.2.2.1.2 Tables.. C-14
C.2.2.1.3 VRF Table Components C-14
C.2.2.1.4 Indexes .. C-15
C.2.2.1.5 Narrative Tables.. C-16
C.2.2.1.6 Attribute Tables .. C-16

C.2.2.2 VRF Data Model Components. C-17
C.2.2.2.1 Primitives .. C-18

C.2.2.2.1.1 Nodes ... C-19
C.2.2.2.1.2 Edges.. C-20
C.2.2.2.1.3 Faces .. C-20
C.2.2.2.1.4 Text .. C-20

C.2.2.2.2 Feature Classes.. C-20
C.2.2.2.2.1 Feature Definition C-21
C.2.2.2.2.2 Feature Table Joins C-21
C.2.2.2.2.3 Feature Class Types C-22
C.2.2.2.2.4 Constructing Feature Classes C-22

C.2.2.2.3 Coverage ... C-25
C.2.2.2.3.1 VRF Topology C-25
C.2.2.2.3.2 Value Description Tables....................... C-30
C.2.2.2.3.3 Tiled Coverages. C-30
C.2.2.2.3.4 Cross-Tile Keys...................................... C-33

C.2.2.2.4 Library... C-34
C.2.2.2.4.1 Tile Reference Coverage

(tilref) ... C-35
C.2.2.2.4.2 Library Attributes................................... C-35
C.2.2.2.4.3 Library Coordinate System C-35
C.2.2.2.4.4 Library Reference Coverage

(libref) .. C-35
C.2.2.2.4.5 Data Quality Reference

Coverage .. C-35
C.2.2.2.4.6 Names Reference Coverage

(gazette).. C-35
C.2.2.2.5 Database.. C-36

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 2

C.2.2.3 Data Quality... C-36
C.2.2.3.1 Types of Data Quality Information C-36
C.2.2.3.2 Data Quality Encoding.................................... C-37

C.2.3 Implementation .. C-37
C.2.3.1 General Implementation Information C-37

C.2.3.1.1 Table Definitions .. C-37
C.2.3.1.2 Reserved Table Names and

Extensions ... C-39
C.2.3.2 Primitives... C-42

C.2.3.2.1 Node Primitives .. C-44
C.2.3.2.2 Edge Primitive .. C-46
C.2.3.2.3 Face Primitive ... C-49
C.2.3.2.4 Text Primitive ... C-51
C.2.3.2.5 Minimum Bounding Rectangle

Table.. C-52
C.2.3.2.6 Z-value Differences at Edge

Intersections... C-53
C.2.3.3 Feature Class ... C-56

C.2.3.3.1 Feature Tables ... C-56
C.2.3.3.2 Feature Join Tables ... C-61
C.2.3.3.3 Feature-to-Primitive Relations on

Tiled Coverages .. C-62
C.2.3.3.4 Feature-to-Feature Connectivity C-62
C.2.3.3.5 Feature Stacked-on/Stacked-under C-63
C.2.3.3.6 Multi-Value Attributes.................................... C-63

C.2.3.4 Coverage.. C-64
C.2.3.4.1 Coverage Relationships C-65
C.2.3.4.2 Feature Class Schema Table C-65
C.2.3.4.3 Value Description Table C-67
C.2.3.4.4 Coded Values .. C-68

C.2.3.5 VRF Library... C-70
C.2.3.5.1 Library Header Table C-70
C.2.3.5.2 Geographic Reference Table........................... C-72
C.2.3.5.3 Coverage Attribute Table................................ C-74
C.2.3.5.4 Tile Reference Coverage................................. C-75

C.2.3.5.4.1 Tile Attributes .. C-75
C.2.3.5.5 Registration Point Table C-76
C.2.3.5.6 Diagnostic Point Table.................................... C-77

C.2.3.6 Database .. C-78
C.2.3.6.1 Library Attribute Table C-78
C.2.3.6.2 Database Header Table C-79

C.2.3.7 Data Quality... C-80
C.2.3.8 Narrative Table.. C-82
C.2.3.9 Names Reference Coverage... C-82

C.2.4 VRF Encapsulation .. C-82
C.2.4.1 Table Definition... C-82

C.2.4.1.1 Header ... C-83
C.2.4.1.2 Record List.. C-86

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 3

C.2.4.1.3 Variable-length Index File C-86
C.2.4.2 Spatial Index Files ... C-87
C.2.4.3 Thematic Index Files ... C-88

C.2.4.3.1 Feature Index... C-92
C.2.4.4 Allowable Field Types... C-94
C.2.4.5 Naming Conventions ... C-95
C.2.4.6 Triplet Id Field Type.. C-96

C.2.5 Data Syntax Requirements ... C-97
C.2.5.1 Integer Numbers .. C-98
C.2.5.2 Real Numbers .. C-98
C.2.5.3 Date and Time Syntax ... C-100
C.2.5.4 Text Syntax.. C-101
C.2.5.5 Coordinate Syntax ... C-102
C.2.5.6 Coordinate Strings ... C-102

C.3 NOTES ...C-102
C.3.1 Intended Use... C-102

Annex C - Appendices page

C1 INTRODUCTION TO THE VRF DATA MODEL......................................C1-1
C1.1 GENERAL .. C1-1
C1.2 APPLICABLE DOCUMENTS... C1-1
C1.3 DEFINITIONS .. C1-1
C1.4 GENERAL INFORMATION ... C1-1

C1.4.1 Introduction .. C1-1
C1.4.2 Data Model Concepts ... C1-1

C1.4.2.1 Data Objects... C1-2
C1.4.2.2 Data Operations ... C1-2
C1.4.2.3 Data Rules.. C1-2
C1.4.2.4 Database Purpose ... C1-2

C1.4.3 Relational Data Model Concepts...................................... C1-3
C1.4.3.1 Relational Data Objects C1-3
C1.4.3.2 Relational Data Operations C1-4
C1.4.3.3 Relational Data Rules C1-4

C1.4.4 Plane Topology Model Concepts C1-4
C1.4.4.1 Topological Objects ... C1-4
C1.4.4.2 Topological Operations.................................... C1-6
C1.4.4.3 Topological Rules .. C1-6
C1.4.4.4 The VRF Georelational Data

Model .. C1-7
C2 WINGED-EDGE TOPOLOGY...C2-1

C2.1 GENERAL .. C2-1
C2.2 APPLICABLE DOCUMENTS... C2-1
C2.3 DEFINITIONS .. C2-1
C2.4 GENERAL INFORMATION ... C2-1

C2.4.1 Winged-Edge Topology.. C2-1
C2.4.2 Components of a Winged Edge.. C2-1

C2.4.2.1 Inner and Outer Rings C2-2

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 4

C2.4.3 Winged-Edge Algorithm .. C2-3
C2.4.4 Cross-Tile Topology... C2-6

C3 FEATURE CLASS RELATIONS...C3-1
C3.1 GENERAL .. C3-1
C3.2 APPLICABLE DOCUMENTS... C3-1
C3.3 DEFINITIONS .. C3-1
C3.4 GENERAL INFORMATION ... C3-1

C3.4.1 Overview .. C3-1
C3.4.1.1 Software Performance...................................... C3-1
C3.4.1.2 Tiled Coverages ... C3-2
C3.4.1.3 Indexing ... C3-2

C3.4.1.3.1 Thematic Indexes C3-2
C3.4.1.3.2 Spatial Indexes .. C3-2
C3.4.1.3.3 Feature Indexes C3-3

C3.4.2 Feature and Primitive Table Relationships....................... C3-3
C3.4.3 One-to-One Relationships. ... C3-3

C3.4.3.1 1:1 Feature Class in an Untiled
Coverage ... C3-3

C3.4.3.2 1:1 Feature Class in a Tiled
Coverage ... C3-4

C3.4.3.3 1:1 Feature Class in a Tiled
Coverage with Thematic Indexes.................. C3-5

C3.4.3.4 1:1 Feature Classes in a Tiled
Coverage with feature_id
Pointers in the Primitive Tables C3-6

C3.4.3.5 1:1 Feature Classes in a Tiled
Coverage with feature_id
Pointers in the Primitive Tables
and Thematic Indexes.................................... C3-7

C3.4.3.6 1:1 Feature Classes in a Tiled
Coverage with Feature Indexes C3-8

C3.4.4 One-to-Many Relationships.. C3-9
C3.4.4.1 1:N Feature Class in an Untiled

Coverage using Join Tables C3-9
C3.4.4.2 1:N Feature Class in an Untiled

Coverage with a Thematic Index C3-10
C3.4.4.3 1:N Feature Class in a Tiled

Coverage ... C3-11
C3.4.4.4 Tiled 1:N Coverages with

feature_id Pointers in the
Primitive Tables .. C3-11

C3.4.4.5 1:N Feature Class in a Tiled
Coverage with feature_id
Pointers in the Primitive Tables
and Thematic Indexes.................................... C3-12

C3.4.4.6 1:N Feature Class in a Tiled
Coverage with Feature Indexes
and Thematic Indexes.................................... C3-13

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 5

C3.4.5 Many-to-One Relationships.. C3-14
C3.4.6 Many-to-Many Relationship... C3-15
C3.4.7 Complex Feature Relationships.. C3-15

C3.4.7.1 One Complex Feature Composed of
Simple Features from Multiple
Feature Classes.. C3-15

C3.4.7.2 Many Complex, Many Simple
Features ... C3-16

C3.4.7.3 An Example of a Coverage with
Simple and Complex Features C3-17

C4 TILING..C4-1
C4.1 GENERAL .. C4-1
C4.2 APPLICABLE DOCUMENTS... C4-1
C4.3 DEFINITIONS .. C4-1
C4.4 GENERAL INFORMATION ... C4-1

C4.4.1 Rationale.. C4-1
C4.4.2 Cross-Tile Topological Primitives C4-1
C4.4.3 Feature Classes .. C4-2
C4.4.4 Tile Reference Coverage ... C4-2

C5 DATA QUALITY ...C5-1
C5.1 GENERAL .. C5-1
C5.2 APPLICABLE DOCUMENTS... C5-1
C5.3 DEFINITIONS .. C5-1
C5.4 GENERAL INFORMATION ... C5-1

C5.4.1 VRF Data Quality.. C5-1
C5.4.2 General Concepts... C5-1
C5.4.3 Data Quality Tables ... C5-2

C5.4.3.1 Lineage.. C5-2
C5.4.3.2 Placement of DQ Table..................................... C5-2

C5.4.4 Data Quality Coverages... C5-2
C5.4.4.1 Coverage Components C5-3
C5.4.4.2 Coverage Examples .. C5-3

C5.4.4.2.1 Shared Regions and Common
Attributes.. C5-4

C5.4.4.2.2 Coverage-Specific
Information... C5-4

C5.4.5 Conclusions ... C5-5
C6 SPATIAL INDEXING ..C6-1

C6.1 GENERAL .. C6-1
C6.2 APPLICABLE DOCUMENTS... C6-1
C6.3 DEFINITIONS .. C6-1
C6.4 GENERAL INFORMATION ... C6-1

C6.4.1 Introduction ... C6-1
C6.4.2 Categories of Spatial Decomposition C6-1

C6.4.2.1 Tile Directory.. C6-1
C6.4.2.2 Spatial Index ... C6-2
C6.4.2.3 Minimum Bounding Rectangle

(MBR) ... C6-2

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 6

C6.4.2.4 Primitive Coordinates C6-2
C6.4.3 VRF Spatial Index File .. C6-2

C6.4.3.1 Tree Navigation... C6-3
C6.4.3.2 Spatial Index Coordinate System...................... C6-4

C6.4.4 Examples of Spatial Index Creation.. C6-6
C6.4.4.1 Example of Tree Creation................................. C6-9

C6.4.5 Spatial Query ... C6-14
C6.4.6 Spatial Query using the Sample Tree C6-14

Annex C - Figures page

C-1 Relationship Between VRF and Specific ProductsC-10
C-2 Vector Relational Format Structure ...C-11
C-3 Byte Stream..C-12
C-4 VRF Structural Levels..C-17
C-5 Geometric and Cartographic Primitives...C-18
C-6 Primitive Directory Contents ...C-19
C-7 Feature Class Structural Schema (level 3) ...C-23
C-7A Feature Class Structural Schema (level 0-2) ...C-23
C-8 Coverage Contents ...C-25
C-9 Levels of Topology in VRF Coverages..C-26
C-10 Level 0 Topology ..C-27
C-11 Level 1 and Level 2 Topology...C-28
C-12 Level 3 Topology ..C-29
C-13 Storage of Tile Boundaries..C-31
C-14 A Tiling Scheme ...C-33
C-15 Face Cross-Tile Matching ...C-34
C-16 Library Directory...C-34
C-17 Database Directory..C-36
C-18 Node, Edge, and Face Primitives ..C-43
C-18A Geometry for Geometric Circular Arcs ...C-48
C-19 Multiple Value Attribute Relationships ..C-64
C-20 Multiple Value Attribute Relationship Example ..C-64
C-21 Table Structure ..C-83
C-22 Examples of the Triplet Id...C-97
C-23 VRF Integer Number Syntax...C-98
C-24 Real Number Syntax ...C-100
C-25 Date and Time Syntax ...C-101

C1-1 The Definition of Faces...C1-5
C2-1 Winged-Edge Components ...C2-2
C2-2 Face 5 is Represented as a Single Ring in the Ring TableC2-2
C2-3 Face 5 is Represented as Two Rings in the Ring TableC2-3
C2-4 Face 5 is Represented as Two Rings in the Ring TableC2-3
C2-5 Winged-Edge Example, with Drawing Completely Contained

within Tile ...C2-4
C2-6 Cross-Tile Edge Rules...C2-8

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 7

C2-7 Tile Boundary Primitive Behavior .. C2-9
C2-8 Cross-Tile Edge Example ...C2-10
C3-1 Implementation of a 1:1 Feature Class in an Untiled

Coverage ...C3-4
C3-2 Implementation of a 1:1 Feature Class in a Tiled CoverageC3-4
C3-3 Implementation of a 1:1 Feature Class in a Tiled Coverage

with a Thematic Index...C3-5
C3-4 Implementation of a 1:1 Feature Class in a Tiled Coverage

with feature_id Columns Added to the Primitive Tables..........................C3-6
C3-5 Implementation of a 1:1 Feature Class in a Tiled Coverage

with feature_id Columns in the Primitive Tables and
Thematic Indexes ..C3-7

C3-6 Feature-to-Primitive and Primitive-to-Feature Linkage..............................C3-8
C3-7 Implementation of 1:N Feature Class in an Untiled Coverage

with a Join Table ...C3-9
C3-8 Implementation of a 1:N Feature Class in an Untiled

Coverage using Join Tables and Thematic IndexesC3-10
C3-9 Implementation of a 1:N Feature Class in a Tiled CoverageC3-11
C3-10 Implementation of a 1:N Feature Class in a Tiled Coverage

that includes feature_id Columns in Primitive TablesC3-12
C3-11 Implementation of a 1:N Feature Class in a Tiled Coverage

that includes feature_id Columns and Thematic Indexes..........................C3-13
C3-12 Implementation of a 1:N Feature Class in a Tiled Coverage

with Feature Indexes ...C3-14
C3-13 Implementation of a Complex Feature composed ofC3-16
C3-14 Implementation of a Complex Feature Relationship in which

Many Complex Features are Made Up of Many Simple
Features in One Feature Table ..C3-17

C3-15 fcs Record Numbers Linking Tables for Complex FeatureC3-18
C5-1 Data Quality Coverage Design-1 ..C5-4
C5-2 Data Quality Coverage Design-2 ..C5-5
C6-1 Spatial Index Cell Decomposition ..C6-5
C6-2 Location of MBRs in Tile ...C6-8
C6-3 Tile Content Divided in Four Quarters ...C6-9
C6-4 First Cell Split ...C6-10
C6-5 Content of Cell 1 ...C6-11
C6-6 Second Cell Split...C6-12

Annex C - Tables page

C-1 Directory Structure... C-13
C-2 VRF Table Structure .. C-15
C-3 City Attribute Table ... C-16
C-4 State Attribute Table .. C-17
C-5 Feature Table Structure .. C-21
C-6 Feature Class Schema Table .. C-24
C-7 Feature Class Schema Table and Simple Feature Class............................... C-24
C-8 Columns Required to Define Topology in VRF Coverages......................... C-27

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 8

C-9 Tiled Coverages Sample Tables... C-32
C-10 Table Definition Example ... C-37
C-11 Column Types ... C-38
C-12 Key Types.. C-39
C-13 Optional/Mandatory Conditions.. C-39
C-14 Reserved File Names... C-40
C-15 Reserved Directory Names.. C-40
C-16 Reserved Table Name Extensions... C-41
C-17 Entity Node Definition .. C-44
C-18 Entity Node Record Example.. C-44
C-19 Connected Node Definition... C-45
C-20 Connected Node Record Example .. C-45
C-21 Node Table Definition... C-46
C-22 Node Record Example .. C-46
C-23 Edge Table Definition ... C-47
C-24 Edge Record Example... C-49
C-25 Face Table Definition.. C-50
C-26 Face Record Example ... C-50
C-27 Ring Table Definition ... C-51
C-28 Ring Record Example ... C-51
C-29 Text Primitive Structure Table.. C-52
C-30 Text Primitive Record Example.. C-52
C-31 Minimum Bounding Rectangle Definition.. C-53
C-32 Face Bounding Rectangle Record Example.. C-53
C-32A zcoin Related Attribute Table Definition .. C-54
C-32B zcoin Related Attribute Table Example .. C-54
C-32C Edge Start/End Node Join Table for Disjoint z-values C-55
C-32D Connected Node Join Table for Disjoint z-values C-55
C-32E Primitive Expansion Schema Table Description C-55
C-32F Primitive Expansion Schema Table Example.. C-56
C-33 Feature Table Definition (1:1 or N:1) ... C-57
C-33A Feature Table Definition (1:N or N:M)... C-57
C-33B Complex Feature Table Definition.. C-58
C-34 Area_to_Edge Join Table Definition .. C-58
C-35 Feature Relations Join Table (Coverage Level) Definition......................... C-60
C-35A Feature Relations Join Table (Library Level) Definition C-60
C-35B Feature Relations Join Table (Library Level) Example............................ C-61
C-36 Feature Join Table Definition.. C-62
C-37 Feature Class Schema (Coverage Level) Definition C-65
C-38 Feature Class Schema (Coverage Level) Example C-66
C-38A Feature Class Schema (Library Level) Definition.................................... C-66
C-38B Feature Class Schema (Library Level) Example C-67
C-39 Value Description Table Definition .. C-67
C-40 Integer Value Description Record Example.. C-68
C-40A Standardized Coded Values ... C-68
C-40B Standardized Attribute Value Join Table ... C-69
C-40C Standardized Attribute Value (sav) .. C-69
C-41 Library Header Table .. C-71

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 9

C-42 Geographic Reference Table ... C-73
C-43 Coverage Attribute Table Definition... C-74
C-44 Coverage Attribute Table Example... C-75
C-45 Tile Reference Area Feature Table Definition .. C-76
C-46 Tile Area Feature Record Example... C-76
C-47 Registration Point Table.. C-77
C-48 Diagnostic Point Table.. C-77
C-49 Library Attribute Table Entity Definitions.. C-78
C-50 Library Attribute Table Example .. C-79
C-51 Database Header Table Definition .. C-79
C-52 Data Quality Table Definition... C-81
C-53 Narrative Table Definition .. C-82
C-54 Header Field Definitions ... C-84
C-55 Text Header Example..C-85
C-56 Components of Variable-length Index File ...C-86
C-57 Spatial Index File Header Record Layout ...C-87
C-58 Structure of the Bin Array Record ..C-87
C-59 Structure of the Bin Data Record ..C-88
C-60 Thematic Index File Header Record Layout ...C-90
C-61 Structure of Index Directory Record ...C-91
C-62 Thematic Index Header Example..C-91
C-63 Thematic Index Directory Example ..C-92
C-64 Thematic Index Data Example..C-92
C-65 Feature Class Attribute Table Definition ..C-93
C-66 Feature Index Table Definition ...C-94
C-67 Allowable Field Types ..C-94
C-68 Type Byte Definitions ...C-97

C2-1 Sample Area Feature Table for Figure C2-5 ...C2-5
C2-2 Sample Face Table for Figure C2-5 ..C2-5
C2-3 Sample Ring Table for Figure C2-5..C2-5
C3-1 Feature Table Join Column Definitions ..C3-2
C3-2 Content and Format for Terminal Procedures Coverage

Feature Class Schema Table ...C3-19
C6-0A Cell Decomposition Levels ...C6-4
C6-1 Minimum and Maximum Coordinates for 19 Primitives in a

Tile ..C6-6
C6-2 Minimum and Maximum Spatial Index Coordinates..................................C6-7
C6-3 Example of Spatial Index ..C6-13

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 10

C.1 GENERAL REQUIREMENTS

C.1.1 General

Vector Relational Format (VRF) is a generic geographic data model designed to be used
with any digital geographic data in vector format that can be represented using nodes,
edges, and faces. VRF is based upon the georelational data model, combinatorial topology,
and set theory (see Appendix C1 for discussions of these concepts).

A VRF-compliant database product must include all mandatory tables and columns which
are described in clause C.2. Similarly, a VRF-compliant application must properly
interpret all mandatory and optional tables and columns enumerated in this document.

C.1.2 Relationship Between VRF and Specific Products

VRF establishes a standard data model and organization, providing a consistent interface to
data content. Data content itself shall be defined in a product specification that determines
the content of the feature tables and the relationships between them. VRF can also
accommodate additional tables that are not required by VRF itself. Without further
standardization these additional tables, although VRF-compliant in structure, will provide
column names and attribute values that may not be understood by others. Use of tables
outside of those described in this standard may limit interoperability. Figure C-1 illustrates
the relationship between VRF and specific products.

Contents

Forms

Products

Applications

End User Analyst

Vector Relational
Format Software

Vector Relational
Format (VRF)

Digital
1:250,000

Product
Specification

Digital
1:50,000
Product

Specification

Digital
1:50,000
Product

Digital
1:250,000

Product

Digital
1:1,000,000

Product

Digital
1:1,000,000

Product
Specification

Figure C-1 Relationship Between VRF and Specific Products

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 11

C.1.3 VRF Hierarchy

VRF can be viewed as a five-level hierarchy of definitions (Figure C-2) that increase in
degree of abstraction from the bottom up. The bottom two levels define the physical
representations of various data structures utilized in VRF. The data structure level
concerns the logical representation of VRF data objects. These objects are elements in the
VRF data model. The data model describes the data objects and the relationships among
them. The top level, which contains the product specification, is used to tailor VRF to the
requirements of the product.

Product
Specification

Data Syntax

Encapsulation

Data Structures

Data Model

Vector Relational Format

Figure C-2 Vector Relational Format Structure

This document gives a definition of VRF that encompasses the bottom four levels. A
product specification is a combination of the conceptual database design and
implementation details required to develop a product that is compliant with VRF. The
conceptual modeling of feature classes and coverages is the first responsibility of the
author of the product specification. This includes defining the list of features, attributes,
attribute values, and providing their definitions. The physical design of the product
database is also the responsibility of the author of the product specification. Physical
design considerations include determining the tiling scheme, the topology level, the feature
to / from primitive relationships (i.e., 1:1, 1:N, N:1 and N:M), the column types, and the
table definitions.

C.2 DETAILED REQUIREMENTS

C.2.1 General

This clause describes the necessary components of Vector Relational Format (VRF).
Clause C.2.2 discusses the conceptual components of the VRF data model (see Appendix

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 12

C1 for an overview describing the data model). Clause C.2.3 contains definitions of the
data structures implemented in VRF. The encapsulation of VRF field types, table
construction, and indexing structures are discussed in clause C.2.4. The encoding of the
data syntax is found in clause C.2.5.

C.2.2 VRF Data Model

The discussion of the data model is broken into three subclauses: data organization, VRF
data model components and data quality. Each of these subclauses addresses the data
model from a different perspective. The data organization subclause (C.2.2.1) addresses
VRF by defining the physical structures that make it up. Only three structures are used to
implement the entire VRF data model: directories, tables and indexes. The data model
component subclause (C.2.2.2) addresses VRF by defining the entities in a geographic
database and describing the way in which these entities are captured through the physical
VRF structures, starting with the most basic components (primitives) and continuing
through the other levels (features, coverages, libraries and database). Finally, the data
quality subclause (C.2.2.3) describes the options available in VRF for the maintenance of
data quality information at any level in the data model.

C.2.2.1 Data Organization

All VRF data is organized in the form of files. A file is a named, sequentially ordered
stream of bytes (Figure C-3). Files may be created, deleted, opened, closed, read (from
byte m to byte n), and written (from byte m to byte n).

byte 1 byte 2 byte 3 byte n

Figure C-3 Byte Stream

VRF uses only three types of files: directories, tables and indexes. All directory and file
names in VRF databases are to be in lower case.

Note: It is acknowledged that, when CD-ROM output is generated by conversion software
complying with ISO 9660, directory and file names are automatically converted to upper case.
Case-sensitive operating systems accommodate this change through their ISO 9660 import
software. However, even in this case, embedded references to directory and file names will always
be in lower case.

C.2.2.1.1 Directory

The directory is a file that identifies the names of a collection of files, and their beginning
addresses and lengths (Table C-1).

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 13

Table C-1 Directory Structure

Directory

Name Address Length

File Name Location on
Medium

Length in Media Storage
Units

VRF directories are strictly hierarchical; each file is contained in exactly one directory.
File names must be unique within a directory. A file referenced by a directory is said to be
contained in that directory. A file contained in a directory may be referenced by a special
form of its name called a pathname (because it contains the location path to the file). A
pathname has the following form:

<directory name><separator><file name>

where:

< > indicates that the enclosed name element is to be replaced with the actual text string
indicated.

VRF uses the backslash character (\) as the generic pathname directory separator. For
platforms requiring a different separator, software will replace the backslash with the
appropriate separator character. For example, if a file named roads.lft is contained in a
directory named urbareas, and the separator is (\), the resulting pathname would be:

urbareas\roads.lft

Directories are themselves files, so they may be contained in other directories. They are
referenced by pathname the same way as other files. Thus, if urbareas is contained in
library1, the resulting pathname would be:

library1\urbareas

Finally, pathnames may be combined. Since the directory that contains a file can be
contained within a directory itself, it is necessary to have a form of file name that uniquely
identifies that file contained within that directory (file names, while unique within a
directory, are not unique between directories). For our example, that form would be:

library1\urbareas\roads.lft

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 14

C.2.2.1.2 Tables

In the VRF data model, the table is the organizational structure for all data content. All
tables in a VRF database share a common basic structure; this structure, which is described
in the VRF table components clause (C.2.2.1.3), is mandatory for all VRF tables.

By definition, a VRF table must include at least the basic structure. Optionally, a VRF
table can also reference additional structures: the narrative table, thematic index(es),
column narrative table(s) and value description table(s). A table can also have an
associated variable-length index and a spatial index (for primitive tables). In the VRF data
model, all geographic phenomena are modeled by VRF tables or by tables derived from a
VRF table. A table derived from a VRF table is one that possesses all the properties of a
VRF table but also has additional properties that support other specific functions.

The primitive table and the attribute table are examples of derived VRF tables. A derived
table can also be further specialized to satisfy a particular need. For example, a feature
table may be derived from the attribute table.

A VRF table may have an associated index file for variable-length records and a narrative
table. A primitive table (discussed in clause C.2.2.2.1) may possess these two tables
associated with its VRF table, but may also have a spatial index file and a minimum
bounding rectangle table. An attribute table may also possess the tables associated with a
VRF table, but may also have value description tables that provide the data dictionary for
the table. The same data dictionary table may be shared by more than one attribute table.
Finally, a feature table inherits the tables associated with an attribute table, but may also
have a thematic index file. Feature tables are discussed further in clause C.2.3.3.1.

C.2.2.1.3 VRF Table Components

VRF tables consist of the following parts: a table header, a row identifier, and the table
contents (under special situations (clause C.2.2.2.3.3) a table may contain only a header).
The table header contains the metadata about a table and the column definitions. Columns
are defined by a name and a data type; each column must have a name that is unique within
the table.

Data contents in VRF tables are organized into rows and columns. All rows in a table
share the same column definitions. Each row in the table is defined by a unique row
identifier (row id). The row ids shall start at 1 and be sequential with no gaps in the
numbering. Table C-2 depicts the principal components of a VRF table.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 15

Table C-2 VRF Table Structure

Table Header
Metadata and column definitions:

a. Table description
b. Narrative table name (optional)
c. Column definitions:
 Column name
 Field type
 Field length
 Key type
 Column textual description
 Optional value description table name
 Optional thematic index name
 Optional column narrative table name

ID Table of Contents

Indicates the starting position
of each row.

The data composing the table that
match the column definitions.

This document describes the column definitions for all the VRF standard-specified column,
and the table organization for those columns. No specific ordering of columns within a
table is required. Product specifications may require a particular product-specific order.
Data columns and tables described in this document are labeled either mandatory or
optional. A VRF product must include all mandatory tables and columns. It is not
possible to remove any mandatory column from any table. A VRF-compliant application
must be able to process a VRF product and interpret all mandatory and optional columns as
described in this document.

Additional product-specific columns are allowed by VRF. If present, these columns must
be defined in their product specifications. Product-specific columns must not alter the use
of the columns specified in this document.

C.2.2.1.4 Indexes

A table may have associated indexes. If a table contains a variable-length coordinate string
column, a variable-length string column or a field type "K" (triplet id), a separate variable-
length index file must be present.

In addition to variable-length indexes, VRF also supports spatial, thematic, and feature
indexes. Spatial indexes contain references to row data that are based on the value of a
coordinate column. Thematic indexes contain references to row data that are based on the
value of non-coordinate columns.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 16

Feature indexes have been developed to enhance processing of complex queries. They
contain references linking rows in primitive tables to rows in associated feature tables.

C.2.2.1.5 Narrative Tables

Each VRF table may have an associated narrative table that provides miscellaneous
information about the VRF table. The purpose of the narrative table is to provide the
database designer with the ability to record comments or information pertinent to the
associated feature table. The narrative table name is stored in the VRF feature table's
header information. In addition, VRF provides for optional narrative tables keyed to
individual columns within a table. The narrative table name is stored as the third optional
entry in the column definition (see Table C-2).

C.2.2.1.6 Attribute Tables

Real-world objects are referred to as entities or features; they are modeled in tables in
VRF. The properties of entities are called attributes. In an attribute table, one table
column is defined for each attribute describing an object. Each object occupies a row in
the table. Examples of attributes include data quality, size and name. A sample attribute
table is shown in Table C-3.

A column or a group of columns that can be used to identify or select a row is called a key.
A unique key is a key that uniquely identifies each row. One unique key is designated the
primary key; each table has one and only one primary key. In the city attribute table (Table
C-3), the built-up area column is the primary key.

Table C-3 City Attribute Table

ID Built-Up Area State Population
Size

Median
Income per
Household

implicit character string character
string

binary integer binary integer

UNIQUE KEY PRIMARY KEY
NON-UNIQUE
(Foreign Key) NON-UNIQUE NON-UNIQUE

1 Los Angeles California 2966850 15735
2 New York New York 7071639 13854
3 Salt Lake City Utah 163033 13211
4 Las Vegas Nevada 164674 17468
5 San Francisco California 1366383 16782

A relational join is a database operation that brings together a number of tables into a new
relation by using a set of common keys. The tables in such joins are called base tables.
When a common key in a join is the primary key in one of the base tables but not in
another, the non-primary (yet common) key is called a foreign key.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 17

In the city attribute table (Table C-3), the state column is a foreign key; in the state attribute
table (Table C-4), the state column is the primary key. In the city attribute table (Table C-
3) the state column becomes a foreign key only through its reference by the state attribute
table (Table C-4).

Table C-4 State Attribute Table

ID State Area (sq.mi.) Total
Population

implicit character string binary integer binary integer

UNIQUE KEY PRIMARY KEY NON-UNIQUE NON-UNIQUE

1 California 158706 26365000
2 Nevada 110561 936000
3 New York 49108 17783000
4 Utah 84899 1645000

C.2.2.2 VRF Data Model Components

The VRF data model may be considered to be layered into four structural levels (Figure C-
4). At the lowest level, a VRF database consists of feature classes. In the database, these
feature classes are defined using VRF primitive and attribute tables. Feature classes make
up coverages, which in turn make up libraries, and finally, a database is made up of
libraries.

Feature Class

Coverage

Library

Database

Figure C-4 VRF Structural Levels

An analogy can be drawn between VRF and written language. Letters are at the bottom of
the language hierarchy. Words are made up of letters. In turn, sentences are made up of
words. An essay is created from sentences, and a collection is made up of essays. Each of
these entities has a distinct and different meaning not possessed by the entities below. The
content of each entity, however, depends on that of the constituent entities.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 18

Databases and libraries are used primarily to facilitate data access, whereas coverages
(which incorporate topology) are used to define the relationships between features.

C.2.2.2.1 Primitives

There are three geometric primitives in VRF: nodes, edges, and faces (Figure C-5). As
Figure C-5 shows, there are two types of node primitives: entity nodes and connected
nodes. There is one type of cartographic primitive, text. These four primitives are
combined to model any geographic phenomena using vector geometry. All primitives
except text can be linked to each other by topological relationships, which are discussed
further in clause C.2.2.2.3.1.

Coordinates must be consistent with the type specified in data_type in the Geographic
Reference Table: Geographic Coordinates (if GEO), Grid Coordinates (if MAP), Relative
Coordinates (if DIG). Units of measure are also specified in that table.

Washington

New
York

Boston

Albany

Harrisburg
Entity (Isolated) Node

Text

Edge
Connected Node
Face

Grand
Bank

State Boundaries
Cities

Figure C-5 Geometric and Cartographic Primitives

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 19

Narrative
Table

Optional

Mandatory

Ring
Table

Face
Bounding
Rectangle

Table

Edge
Bounding
Rectangle

Table

* mandatory when variable-length column is defined in a table

Face
Table

Edge
Table

Connected
Node Table

Text
Table

Entity
Node Table

Entity Node
Spatial Index

Text

Spatial
Index

Thematic
Index

Connected
Node

Spatial Index

Narrative
Table

Variable-
Length
Index *

Variable-
Length
Index *

Face
Spatial
Index

Edge
Spatial
Index

Narrative
Table

Narrative
Table

Thematic
Index

Thematic
Index

Thematic
Index

Thematic
Index

Narrative
Table

Figure C-6 Primitive Directory Contents

The following clauses summarize each of the primitives. Figure C-6 depicts each primitive
and its associated tables and indexes.

C.2.2.2.1.1 Nodes

Nodes are zero-dimensional primitives that are used to store significant locations. No two
nodes can occupy the same coordinate tuple. There are two types of nodes: entity nodes
and connected nodes.

a. Entity Nodes are used to represent isolated features that are either truly zero
dimensional, such as survey points, or too small to resolve at the collection
scale, such as water towers at 1:24,000 scale. An entity node is topologically
linked to its containing face when face, topology is present. An entity node
cannot fall on an edge.

b. Connected nodes are always found at the ends of edges and are topologically
linked to the edges. Connected nodes are used in two ways: (1) to define
edges topologically and (2) to represent point features that are found at the
start or end of an edge, such as overpasses, locks in a canal, or underground
utility access points. Under the first usage, the connected nodes are referred
to as start and end nodes. Under the second usage, attributes will be
associated with the point features related to the connected nodes. All
connected nodes are included in the node table. If many edges intersect a
node, only one edge will be maintained per node in the node table; other
edges are linked by using winged-edge topology (Appendix C2).

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 20

All connected nodes which lie on a tile boundary will have cross-tile components
(tile_id and first_edge).

C.2.2.2.1.2 Edges

Edges are one-dimensional primitives that are used to represent the locations of linear
features (such as roads) and the borders of faces. Edges are composed of an ordered
collection of two or more coordinate tuples (pairs or triplets). At least two of the
coordinate tuples must be distinct. The orientation of an edge can be recognized by the
ordering of the coordinate tuples.

Edges are topologically defined by nodes at ends (levels 1-3 topology); edges, in turn,
define faces (level 3 topology). In addition to the start node and end node columns, the
edge primitive table contains column information (right edge, left edge, right face, left
face) that is necessary to support higher levels of topology. This topology information
permits the query and retrieval of features. The direction of an edge is its orientation from
start node to end node. Each edge table has an associated edge bounding rectangle (ebr)
table which contains the minimum bounding rectangle (mbr) for each edge. There is a one-
to-one relationship between the edge table and its associated edge bounding rectangle table.
Appendix C2 describes the use of winged-edge topology, which is used with edge
primitives.

C.2.2.2.1.3 Faces

A face is a two-dimensional primitive enclosed by edges. Faces may be used to represent
area features, (such as countries, inland water, or urban areas). Faces are non-overlapping,
and the faces in a coverage completely exhaust the area of a plane. Faces are defined by
topological references to a set of edges that compose the face border. A face may consist
of multiple rings; there is one outer ring (traversed clockwise) and zero or more inner rings
(traversed counter-clockwise). Each face table has an associated face bounding rectangle
(fbr) table which contains the minimum bounding rectangle for each face. There is a one-
to-one relationship between the face table and its associated face bounding rectangle table.

C.2.2.2.1.4 Text

Text is a cartographic rather than a geometric object. Text strings can be placed in specific
locations in geographic space. Text can be used to associate names with regions that are
vague or ill-defined, such as the Rocky Mountains. A text primitive may also be used
when the name of a feature needs to be located in a specific relationship to a feature and
could not otherwise be reproduced. For example, the text "Pacific Ocean" may be required
for graphic display on a map, and may therefore be encoded as a text string, even though it
is also being stored as an attribute of an area in a hydrographic coverage. Text primitives
do not participate in topology.

C.2.2.2.2 Feature Classes

A feature class is a set of features that share a homogeneous set of attributes. Features are
defined using primitive and attribute tables by means of relational modeling.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 21

Tables are related to each other by their common keys. The relationships between tables
are determined by the product specification.

C.2.2.2.2.1 Feature Definition

A feature is represented by a set of one or more primitives, a single row of attribute data in
a feature table which uniquely identifies the feature, and zero or more rows of attribute data
in other tables. A simple feature (e.g., spot height) may consist of one or more primitives
of a single type and a single row of attribute data. A complex feature (e.g., an airport) will
be identified by one row in a complex feature table, but will include the additional
information contained in other feature tables. A feature may be logically related to another
feature (e.g. a road connects with an interchange, a bridge is stacked on a river).

Features are grouped into feature classes. Each feature class is individually defined by a
set of attributes (column definitions) and is uniquely named. The rows of features in a
feature class collectively form the feature table for the feature class. Every feature class
has one and only one feature table. The feature table is a special form of an attribute table
because it directly references a feature. Table C-5 expresses the basic structure of a feature
table in VRF.

Table C-5 Feature Table Structure

Primary Key Attributes

Either a primitive row identifier
or feature definition table id
(may be the table id).

Attributes as specified in the product
specification, or join values for
reference into other attribute tables.

C.2.2.2.2.2 Feature Table Joins

Simple features may be composed of one or more primitives of a single type, while
complex features may be composed of one or more simple or complex features. A feature
join designates which primitives belong to which features. Feature joins may also be used
to logically relate features to one another. Four types of feature joins represent all the
possible relationships between features and primitives: one-to-one, many-to-one, one-to-
many, and many-to-many. Appendix C3 provides a detailed discussion of these four types
of join columns and feature join tables.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 22

C.2.2.2.2.3 Feature Class Types

There are two types of feature classes in VRF: simple feature classes and complex feature
classes. Figures C-7 and 7a portrays the structural schema of these feature classes.

a. Simple feature classes. A simple feature class consists of a (logically) single
primitive table and a single simple feature table. There are four subtypes of
the simple feature class in VRF:

(1) Point feature classes (composed of entity or connected nodes)
(2) Line feature classes (composed of edges)
(3) Area feature classes (composed of faces (level 3) or of edges (level

0-2). See C.2.2.2.3.1 for definition of topological levels)
(4) Text feature classes

A text feature class consists of a text primitive table and a text feature table.
The text feature class is not a true feature class, but it is often useful to
process text as if it were a feature. For instance, many maps contain text
annotation that does not reference a specific geographic entity. The text
"Himalaya Mountains" may not define any geometric primitive or feature, but
merely provide associative information for the viewer. Using a text feature
allows thematic queries on text just like other features. For instance, if a text
feature has a height attribute, software can retrieve 'all text with HEIGHT >
0.5'.

b. Complex feature classes. A complex feature class consists of one or more
simple feature classes, one or more complex feature classes, or both, and a
single complex feature table, all within one coverage. For example, a
complex watershed feature may be constructed from simple features, such as
rivers, springs, and lakes.

C.2.2.2.2.4 Constructing Feature Classes

A feature class consists of a set of tables that includes at least one primitive table and one
feature table and optionally, join tables and related attribute tables. The rules for
constructing feature classes are stored in the feature class schema table, which describes
how each table relates to each other table in the feature class (Table C-6).

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 23

Face
Entity

Text

Text
 Psuedo Feature

Connected

Join Table Join Table

Join Table

Edge

Join Table

Node

Join Table

Ring
Table

Table

Join

Point
 Simple Feature

Line
 SimpleFeature

Area
 Simple Feature

Complex
Feature

Figure C-7 Feature Class Structural Schema (level 3)

Entity
Text

Text
 Pseudo Feature

Connected

Join Table Join Table

Join Table

Edge

Join Table

Node

Join Table

Table

Join

Point
 Simple Feature

Line
 Simple Feature

Area
 Simple Feature

Complex
Feature

Figure C-7A Feature Class Structural Schema (level 0-2)

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 24

Table C-6 Feature Class Schema Table

Column Name Description
id Required row id
feature_class Name of the feature class
table1 The first table name in the relationship
table1_key Column name of table 1 join key
table2 The second table name in the relationship
table2_key Column name of table 2 join key

Table C-7 shows a feature class schema table and an example of a simple feature class.
Within the schema table, the feature class is named trnline. The first table in the relation is
called trnline.lft. The second table is named edg, which is the standard label for the edge
primitive. The key column, id, in trnline.lft relates to the key column, id, in edg. The
trnline.lft has six attributes: f_code, bot, len, ohb, tuc, and from_to. The following
attributes describe the feature: f_code, bot, len, ohb, and tuc. The attribute from_to, on the
other hand, describes the geometry of the feature (see clause C.2.3.3.1). The edge
primitive contains the required columns for level 2 topology (see clause C.2.2.2.3.1).
Appendix C3 provides additional information on feature classes and feature joins.

Table C-7 Feature Class Schema Table and Simple Feature Class
Feature class schema table

Simple feature class

edg
id
 1

 2

 3

start_node
 4

 4

 1

end_node
 2

 5

 6

right_edge
 9

 5

 7

left_edge
 2

 1

 8

coordinates
-97.706184,31.249201
-97.706001,31.249952
-97.706001,31.250172
-97.706184,31.249201
-97.702660,31.248232
-97.734131,31.250172
-97.734001,31.247892
-97.733795,31.247061
-97.733360,31.246422

id

 1

 2

 3

trnline.lft
from_to

 1

 -1

 1

tuc

 2

 3

 4

ohb

 8

 4

 2

len

 9

 5

 7

bot

 4

 0

 4

f_code

AQ040

AQ040

AQ040

table2_key

 id

 id

table2

edg

trnline.lft

table1_key

 id

 id

table1

trnline.lft

edg

feature_class

 trnline

 trnline

id

 1

 2

fcs

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 25

C.2.2.2.3 Coverage

A coverage is composed of features whose primitives maintain topological relationships
according to a level of topology (level 0, 1, 2, or 3) defined for the coverage. All of the file
structures that make up a coverage are stored in a directory or subdirectories of that
directory.

At the coverage level (see Figure C-8), there are three mandatory components: the
primitive files or the subdirectories containing those primitives, the feature tables, and the
feature class schema table. When join tables are implemented they will exist at the
coverage level. Value description tables must be used when implementing coded
attributes. A variable-length index file is mandatory whenever a variable-length column is
defined in a table. An MBR is required for each face and edge table. Spatial indexes are
optional for each primitive table. A feature minimum bounding rectangle table may be
included for each feature table. Maintaining a data quality table at the coverage level is
optional. Feature index tables may be used to support quick retrieval of feature
information for a selected primitive. Feature class attribute tables are required to support
feature index tables. When tile directories exist, the primitive tables are placed in the tile
directories. Tile directories are mandatory for a tiled coverage.

Tile and
Primitive
Directories

Feature
Class

Schema Table

Feature
Tables

Value
Description

Tables

Data
Quality
Table

2. Mandatory when variable-length column is defined in a table

1. Mandatory when coded attributes are used

Narrative
Table

Variable-
Length
Index

Thematic
Index

Feature
Index

fca & fit

Optional

Mandatory

1

2

Figure C-8 Coverage Contents

C.2.2.2.3.1 VRF Topology

There are four recognized levels of topology in VRF coverages, ranging from level 3,
where all topological connections are explicitly present, to level 0, where no topological
information is explicitly present. Figure C-9 summarizes the characteristics of these levels
and gives an example of each.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 26

Since text does not have any topological relationships, it is not listed in Figure C-9. Text
may be included with other primitives at any topological level, even though it does not
have any topology.

Level Name Primitives Description Example
3 Full

topology
Connected
nodes,
entity
nodes,
edges, and
faces

The surface is partitioned by
a set of mutually exclusive
and collectively exhaustive
faces. Edges meet only at
nodes.

2 Planar graph Connected
nodes,
entity
nodes, and
edges

A set of edges and nodes
where, when projected onto
a planar surface, the edges
meet only at nodes. .

1 Non- planar
graph

Connected
nodes,
entity
nodes, and
edges

A set of entity nodes and
edges that may meet at
nodes.

0 Boundary
represen-
tation
(spaghetti)

Entity
nodes, and
edges.

A set of entity nodes and
edges. Edges contain only
coordinates, not start and
end nodes.

Figure C-9 Levels Of Topology in VRF Coverages

The columns carried in the edge and node tables, which determine connectivity and
adjacency for the topology, depend on the level of topology. For instance, the edge table in
Table C-7 does not contain the level 3 topology columns right_face and left_face, because
faces do not exist in level 2 topology. Table C-8 shows the columns that are mandatory in
each primitive table for the required level of topology. The characteristics of these
columns are specified in the primitive definitions found in clause C.2.3.2.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 27

Table C-8 Columns Required to Define Topology in VRF Coverages

Level Primitive Mandatory Columns
3 Face ring_ptr
3 Ring Table fac_id, start_edge
3 Edge start_node, end_node

right_face, left_face,
right_edge, left_edge

3 Node containing_face,
first_edge

3 Entity Node* containing_face
3-1 Connected Node* first_edge
2-1 Edge start_node, end_node

right_edge, left_edge
2-1 Node first_edge
2-0 Entity Node* (none)
0 Edge (none)
0 Node (none)

* Note: The Node represents the optional single node table. If not used, a coverage will
use separate entity and connected node tables.

Figures C-10, C-11, and C-12 use entity relationship (ER) diagrams to portray the
primitives and their relationships for each level of topology.

Entity
Node

Coordinate
tuple

Edge

Coordinate
tuples

Text

Shape Line

VRF Primitive Table

Geometric Column

Contains

Figure C-10 Level 0 Topology

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 28

Edge

Coordinate
tuples

Text

Shape Line

Entity
Node

VPF Primitive Table

Geometric
Column

Contains

Left Edge

Connected

Coordinate
tuple

Right Edge Start Node

End Node

Connected
Node

Relation

Topological
Column

First
Edge

Coordinate
tuple

Topological

Figure C-11 Level 1 and Level 2 Topology

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 29

Edge

Text

Shape Line

Coordinate
tuple

VRF Primitive Table

Geometric
Column

Contains

Right Edge

Left Edge

Start Node

End Node

Connected
Node

Topological
Relation

First
Edge

Face

Right Face

Left Face

Ring

Start
Edge

Containing
Face

Ring
Pointer

Entity
Node

VRF Table

Topological
Column

Coordinate
tuples

Coordinate
tuple

Figure C-12 Level 3 Topology

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 30

C.2.2.2.3.2 Value Description Tables

A value description table (vdt) is provided to describe coded attributes. There are three
types of attribute values: distinct values, integer value codes, and character value codes.

a. Integer value codes. In many cases, the values entered in an attribute column
are only codes designed to facilitate data processing and transmission.
Numerical codes and their corresponding descriptions are maintained in the
integer vdt.

b. Character value codes. For alphanumeric codes, there is a character vdt
similar to the integer vdt. For instance, feature attribute coding systems
generally use a five-character-string feature coding scheme.

c. Distinct values. Distinct values are attribute values that can be directly
interpreted. Measurements of length or elevation are examples of distinct
values. The interpretation of distinct values does not require a value
description table.

C.2.2.2.3.3 Tiled Coverages

Tiling is geographically subdividing a coverage solely for the purpose of enhancing data
management; a coverage subdivided in such a manner is then referred to as a tiled
coverage. A tiled coverage contains the same attribute information as an untiled coverage.
The logical interpretation of a tiled coverage is identical to that of an untiled one. Each tile
will be a separate subdirectory under the coverage directory and contain separate primitive
tables for those features contained within the tile. A tiled coverage will contain a single
feature table for each feature class. Features in this table are joined with their
corresponding primitives using a combination of tile_id and prim_id. If the entire coverage
is devoid of data, then no coverage directory is necessary. Tiles do not contain feature
attribute or schema tables. These tables belong to the coverage as a whole.

A tiled coverage is physically subdivided into tiles according to a tiling scheme. The tiling
scheme (tile boundaries and size of tiles) and the handling of the features that lie on tile
boundaries and text primitives that cross borders are all defined by a product specification.
Each tile in a tiling scheme has a unique tile identifier. Figure C-14 shows a tiling scheme
that uses regular rectangular tiles. Appendices C2 (Winged-edge topology) and C4 (Tiling)
contain more information on tiling and its impact.

Primitive definition occurs wholly within a tile. The following paragraphs address the
effect of tiling:

a. Edges: When an edge is broken by a tile boundary a connected node is placed
at the edge-tile intersection. The identical (in terms of a geographical
coordinate tuple) connected node occurs in both tiles forming the boundary.
All edges which lie along a tile boundary will have cross-tile topology. The
identical (in terms of a geographical coordinate tuple) edge occurs in both
tiles forming the boundary.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 31

b. Faces: A face broken by a tile boundary has a new edge constructed and
inserted at the boundary for each tile to close the face internal to the tile.
These edges take part in cross-tile topology.

c. Face 1: Face 1 (universe face) represents a special case for tile boundaries. In
those cases where face 1 is the only face being broken, actual tile boundaries
will not be stored. For example, where face 2 is broken by the tile boundary
and the rest of the tile is defined by face 1, only the tile boundary edges
necessary to close face 2 are stored (Figure C-13).

d. Connected Nodes: All connected nodes which lie on a tile boundary will have
cross-tile components (tile_id and first_edge).

Face 1

Face 2

1

2

3

4

Note: Face 1 is the universe
face. The tile's edge table
will only store edges 1,2, 3
and 4. The dashed edges for
the universe face are implied,
but not stored.

Figure C-13 Storage of Tile Boundaries

Two other situations to consider are that of a tile of a level 3 topology coverage which
contains only point features or no features. In these cases, the tile contains either entity
node primitives and face 1 or simply face 1, respectively. Level 3 topology requires
inclusion of a face, ring, edge, node, face bounding rectangle table, and an edge variable-
length index (Table C-8). The face, ring and face bounding rectangle tables will reference
the universe face (face 1) only. The edge table must exist since it is referenced by the ring
table. The node table must exist since it is referenced by the edge table. The existence of
an edge table requires an edge variable-length index and the existence of a face table
requires a face bounding rectangle table. The edge and node table and the edge variable-
length index will contain no records.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 32

See Table C-9 for this scenario:

Table C-9 Tiled Coverages Sample Tables

fac table
id dnarea.aft_id ring_ptr
1 (NULL) 1

rng table
id fac_id start_edge
1 1 (NULL)

fbr table
id x min y min x max y max
1 (null) (null) (null) (null)

edg table
id dnline.lft_id sn en rf lf coordinates

(no records---header information only)

nod table
id dnpoint.pft_id containing_face first_edge coordinates
1 1 1 null 37.5,-76.5
2 5 1 null 39.0, -80.0

Note: The node table will have no records if no entity nodes are present. If using end and cnd
tables, point features (if present) will be linked to the entity node table and there will
be an empty connected node table (containing only a header and no records).

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 33

Untiled
Coverage

Tiled
 Coverage

 Tile ID=2 Tile ID=3

 Tile ID=4 Tile ID=5 Tile ID=6

 Tile ID=7 Tile ID=8 Tile ID=9

Tiles

 Tile ID=1

Figure C-14 A Tiling Scheme

C.2.2.2.3.4 Cross-Tile Keys

VRF provides a mechanism for maintaining geographic features in a logically continuous
spatial database, whether or not a tiling scheme is present. Since the primitives in each tile
of a tiled coverage are managed separately from those in other tiles, labels given to
primitives are unique only within a tile. In order to support a logically continuous spatial
database, a triplet id can be used instead of an integer key to reference primitives across
multiple tiles. The triplet id augments the key of a primitive with the key of the tile in
which the primitive falls. Appendix C2 contains a discussion that fully describes this
concept.

a. For an edge primitive, the triplet id is used to maintain cross-tile topology.
The left face, right face, left edge, and right edge columns are defined as
triplet ids to support tiled coverages. The triplet id contains a reference to the
internal topology within the current tile; the two other components reference
the external tile directory and the primitive within that tile. For example, for a
face divided by a tile boundary, the external id portion of the left face field in
Figure C-15 would include the continuing face in the other tile. This
inclusion of internal and external tile references allows software to detect tile
borders and continue operations across boundaries or to operate only within
the current tile. If a coverage is untiled, the left face, right face, left edge, and
right edge columns may be defined as integer columns; otherwise the external
tile id and primitive id sub-fields of the triplet id will not exist (see C.2.4.6)

b. For a connected node in a tiled coverage the triplet id is applied to the
first_edge column.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 34

c. Cross-tile topology only occurs between tiles within a library. Cross-tile
components will only be populated for edges intersecting tile boundaries
within a library. There is no cross-tile topology between tiles in different
libraries.

4

MJ21

9

MJ22MJ12

37

MJ11

5

Face
Node
Edge

LEGEND

3 MJ12 Tile Name
Tile
Boundary

Figure C-15 Face Cross-Tile Matching

C.2.2.2.4 Library

A library is a collection of coverages that share a single coordinate system and scale, have
a common thematic definition, and are contained within a specified spatial extent. If any of
the coverages composing the library are tiled, then all other coverages must either use the
same tiling scheme, or be untiled. The contents and organization of the libraries are
determined by a product specification. All of the tables and coverages making up the
library are contained within a single master directory (Figure C-16).

Coverages Coverage
Attribute
Table

Library
Header
Table

Geographic
Reference
Table

gazette
Names

Reference
Coverage

Directory

libref

Reference
Coverage *

Reference
Coverage

tileref
Data

Quality
Table

Regist-
ration
Point
Table

Diag-
nostic
Point
Table

Optional

Mandatory

Reference
Coverage *

cat lht grt

#.rpt #.dpt dqt dq

* Mandatory for tiled libraries

Figure C-16 Library Directory

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 35

C.2.2.2.4.1 Tile Reference Coverage (tileref)

A tile reference coverage is mandatory if a library contains tiled coverages. The spatial
extent of the library and its tiling scheme are represented in the tile reference coverage. A
library cannot contain partial tiles. This reference coverage contains a set of faces and area
features identifying the tiles that the library uses to subdivide the region of interest. The
universe face always has a face id that equals one. The inner ring for face 1 in tileref
defines the library's spatial extent. For irregularly shaped libraries, this will be a smaller
total area than the bounding rectangle defined in the lat. The tile reference coverage is a
standard untiled coverage with level 3 topology.

C.2.2.2.4.2 Library Attributes

General information about a library is stored in a variety of metadata tables, (i.e. library
header tables, lht, coverage attribute tables, cat, geographic reference tables, grt, and data
quality tables, dqt).

C.2.2.2.4.3 Library Coordinate System

The coordinate system of a library is defined by a geographic reference table. An example
of a geographic reference table would document the projection used, its base parameters,
and the values used to define the size of the Earth. This information (values for the semi-
major and the semi-minor axis of an ellipsoid, other projection datum information, the
false origin of a projection, and so forth) is necessary to understand a coordinate system in
a VRF library.

C.2.2.2.4.4 Library Reference Coverage (libref)

When tiles exist in the library, a library reference coverage must exist. This coverage is
spatially registered to the tile reference coverage to provide a preliminary view of the data
contained within the library to use for such functions as "zoom out." The contents of this
coverage will be a generalized map of the coverage considered to be most significant to the
library. For example, if a library contains the rivers, transportation, and political
boundaries of the Australian continent, a generalized map of the political boundaries might
be considered appropriate for the library reference coverage.

C.2.2.2.4.5 Data Quality Reference Coverage

It is possible to include a data quality coverage at the library level. This coverage is
spatially registered to the tile reference coverage. Its purpose is to record data quality
information that pertains to the entire library. Appendix C5 contains more detailed
information about the contents of this coverage.

C.2.2.2.4.6 Names Reference Coverage (gazette)

The names reference coverage provides the user with a way to locate a place in a library by
using a place name. This is a special type of thematic query. The most common use of the
names reference coverage is to enter a query string (for instance "London"), have the
software locate all the places that are "London," and display their geographic locations and

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 36

names on the display device. The name feature class contains a point feature table and a
node primitive table.

C.2.2.2.5 Database

A database is a collection of related libraries and additional tables. The library attribute
table acts as a table of contents for the database. Database information is contained in a
database header table. Database level data quality information can be maintained in the
data quality table. Appendix C5 contains more detailed information about the content of
this table. Figure C-17 illustrates the arrangement of database tables and coverages.

Database
Header
Table

Library
Attribute
Table

Libraries

Data
Quality
Table

lat

dqt

Directory

Optional

Mandatory

dht

Figure C-17 Database Directory

C.2.2.3 Data Quality

VRF allows for the storage of data quality information to permit the evaluation of the data
for particular applications. Although the exact form of the data quality information
supplied for a database is set by a product specification, VRF supports incorporation of
data quality information at each structural level in the database. Data quality information
may be stored at any VRF level. When it exists at a given level, it applies to all data at or
below that level. However, when data quality information exists at multiple levels, the
information stored at lower levels always takes precedence over that at the higher levels.

C.2.2.3.1 Types of Data Quality Information

A VRF database may contain seven types of data quality information: source, positional
accuracy, attribute accuracy, date status, logical consistency, feature completeness, and
attribute completeness. Definitions of these quality types are provided in Appendix C5.
The extent of data quality information contained in a product and the types of data quality
to be included are determined by the product specification.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 37

C.2.2.3.2 Data Quality Encoding

Data quality information can be represented as an attribute or as a coverage. In the case of
attributes, data quality information may be added to an existing VRF table, stored in a
separate table, or stored in the data quality table discussed in clause C.2.3.7. Appendix C5
describes data quality encoding in more detail.

C.2.3 Implementation

The following paragraphs describe the implementation requirements of the VRF data
structures. Discussion covers the primitive, feature class, coverage, library, and database
levels. A description of a data quality table and the narrative table is also provided.

C.2.3.1 General Implementation Information

In order to fully explain the content of each data structure, each table is given a text
description, definition table, and an example.

C.2.3.1.1 Table Definitions

These column descriptions define the contents of each table. Each description example
contains five entries: column name, description, column type, key type, and whether the
column is optional or mandatory (Op/Man; see Table C-13). The asterisk (*) in the column
name item is a substitute for an associated feature or primitive table name that is provided
by the product specification. "Null" in example tables refers to a valid VRF null for that
column type. Table C-10 is an example of the table definition style.

Table C-10 Table Definition Example

Column Name Description Column Type Key Type Op/Man
id Row id I P M
*.pft_id Feature id I N OF
containing_face Face containing entity

node
I N M3

first_edge Edge id X N O
coordinate Coordinates C N M

Schema descriptions identify the following columns.

a. Column type. The column type column in the definition table expresses the
type of data the column must contain. The encapsulation of these types is
discussed in additional detail in clause C.2.4. For the purposes of this section,
Table C-11 identifies field types. When the number of elements is not
specified as part of a column type definition described in this document for
any VRF table header, it is assumed to be 1.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 38

b. Key type. VRF provides three key types. They are primary keys, unique
keys, and non-unique keys. Columns identified as non-unique in this
document may be changed to unique by a product specification. Table C-12
lists the key types and the codes used in table definitions. Any primary key
may be referred to as a foreign key in another table.

Table C-11 Column Types

Column Type Description
T,n Fixed-length text
T,* Variable-length text
L,n Level 1 (Latin 1 - ISO 8859) Fixed-length text
L,* Level 1 (Latin 1 - ISO 8859) Variable-length text
N,n Level 2 (obsolete - retained for backward compatibility)
N,* Level 2 (obsolete - retained for backward compatibility)
M,n Level 3 (Multilingual - ISO 10646) Fixed-length text
M,* Level 3 (Multilingual - ISO 10646) Variable-length text

F Short floating point (4 bytes)
R Long floating point (8 bytes)
S Short integer (2 bytes)
I Long integer (4 bytes)

C,n 2-coordinate array - short floating point
C,* 2-coordinate string - short floating point
B,n 2-coordinate array - long floating point
B,* 2-coordinate string - long floating point
Z,n 3-coordinate array - short floating point
Z,* 3-coordinate string - short floating point
Y,n 3-coordinate array - long floating point
Y,* 3-coordinate string - long floating point
D Date and time
X Null field
K Triplet id

G,n 2-coordinate array - short integer
G,* 2-coordinate string - short integer
H,n 2-coordinate array - long integer
H,* 2-coordinate string - long integer
V,n 3-coordinate array - short integer
V,* 3-coordinate string - short integer
W,n 3-coordinate array - long integer
W,* 3-coordinate string - long integer

Note: The asterisk (*) indicates variable-length string. n indicates a fixed-length array; n is
defined by the product specification. The product specification can change columns of type
* to n. Type characters are case sensitive when used in table definitions.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 39

Table C-12 Key Types

 Key Description
P Primary key
U Unique key
N Non-unique key

c. Optional/mandatory. The optional/mandatory column indicates whether the
column is optional or mandatory for a VRF table. For each column, there are
several mandatory conditions, as shown in Table C-13. The code OF is used
on a primitive table when direct pointers to the feature table are desired to
improve performance.

Table C-13 Optional/Mandatory Conditions

Code Description
O Optional

OF Optional feature pointer
M Mandatory

M<n> Mandatory at level n topology (0–3)
MT Mandatory if tiles exist

C.2.3.1.2 Reserved Table Names and Extensions

Each VRF table name consists of a reserved name or extension. Table C-14 lists the tables
whose names cannot be modified or changed.

There are a few reserved directory names at the library and database levels. These names
are listed in Table C-15.

In a coverage directory, there are many feature class tables that have reserved suffixes. The
product specification may define any eight-character prefix, following the naming
conventions detailed in clause C.2.4.5. Table C-16 lists the table suffixes.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 40

Table C-14 Reserved File Names

File Name Description
cat Coverage Attribute Table
cnd Connected Node Primitive Table
csi Connected Node Spatial Index
dht Database Header Table
dqt Data Quality Table
ebr Edge Bounding Rectangle Table
edg Edge Primitive Table
end Entity Node Primitive Table
esi Edge Spatial Index
fac Face Primitive Table
fbr Face Bounding Rectangle Table
fca Feature Class Attribute Table
fcs Feature Class Schema Table
fsi Face Spatial Index
grt Geographic Reference Table
lat Library Attribute Table
lht Library Header Table
nod Node Primitive Table
nsi Node or Entity Node Spatial Index
pes Primitive Expansion Schema Table
rng Ring Table
txt Text Primitive Table
tsi Text Spatial Index

char.vdt Character Value Description Table
int.vdt Integer Value Description Table

Table C-15 Reserved Directory Names

Directory Name Description
libref Library reference coverage

dq Data quality coverage
tileref Tile reference coverage
gazette Names reference coverage

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 41

Table C-16 Reserved Table Name Extensions

File Name Suffix Description
.abr Area Bounding Rectangle Table
.aft Area Feature Table
.ajt Area Join Table
.ati Area Thematic Index
.cbr Complex Bounding Rectangle Table
.cft Complex Feature Table
.cjt Complex Join Table
.cti Complex Thematic Index
.doc Narrative Table
.dpt Diagnostic Point Table
.fit Feature Index Table
.fjt Feature Relations Join Table
.fti Feature Index Table Thematic Index
.jti Join Thematic Index
.lbr Line Bounding Rectangle Table
.lft Line Feature Table
.ljt Line Join Table
.lti Line Thematic Index
.pbr Point Bounding Rectangle Table
.pft Point Feature Table
.pjt Point Join Table
.pti Point Thematic Index
.rat Related Attribute Table
.rpt Registration Point Table
.tbr Text Bounding Rectangle Table
.tft Text Feature Table
.tjt Text Feature Join Table
.tti Text Thematic Index

Any table that contains variable-length records must have a variable-length index
associated with it. The index file shall have the same file name as the table, except that the
last character will end with "x". For example, a variable-length record road line table,
road.lft, would have a variable-length index road.lfx. The one exception to this convention
is for the fcs, whose variable-length index shall be named fcsx. Prior to DIGEST Edition
2.0, June 1997, the variable-length index for the fcs table was named fcz.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 42

C.2.3.2 Primitives

As discussed in clause C.2.2.2.1, there are three types of geometric primitives in VRF:
nodes, edges, and faces. There are two classes of nodes: entity nodes and connected nodes.
In addition, text is used as a cartographic primitive. These four primitives, with the
addition of feature tables, allow the modeling of geographic phenomena requiring vector
geometry. If the optional feature pointer is used, edge, face, and node primitives that are
not features will carry a null in that field. Figure C-18 illustrates the various types of
primitives. Columns can only be added to primitive tables to handle source, positional
accuracy, up-to-dateness, security, and releasability.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 43

Legend :
364 Connected node

1 Entity node
398

Edge

Face1

338
340

358
343

361 359

341
337

356

342

355

357

353
329

335

332

333 336 352

346

334344348

331

347

330

343
345

328
362

349

351350

354

339

360

1

2

2

5

4

7

3

3
6

 (Note: This figure represents a partial database. Therefore only a subset of primitives are shown. A complete set of
primitives would have sequentially numbered IDs beginning with 1.)

Figure C-18 Node, Edge, and Face Primitives

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 44

C.2.3.2.1 Node Primitives

The node primitive (composed of the entity nodes, which are free floating, and the
connected nodes, which occur only at edge ends) can be modeled as either a single node
table (nod) or as separate entity node (end) and connected node (cnd) tables. All nodes
represent zero-dimensional locations.

a. Entity node primitive. The entity node primitive table (end) is composed of
three columns: a primary key, a foreign (to the face table) key, and the node
coordinates. The first_edge null column is included to maintain compatibility
with the connected node primitive so that the formats for both classes of node
primitive conceptually remain the same. The containing_face column is only
required for level 3 topology to maintain a topological relationship to the face
that contains the node. Table C-17 defines the meaning of the entity node
primitive. Table C-18 illustrates an entity node table; the entity nodes
described are those in Figure C-18.

Table C-17 Entity Node Definition

Column Name Description Column Type Key Type Op/Man
id Row id I P M
*.pft_id Feature id I N OF
containing_face Face containing the

entity node
I N M3

first_edge (Null) X N O
coordinate Coordinates C/Z/B/Y/G/

H/V/W
N M

Note: The asterisk (*) indicates a placeholder for the point feature class name.
There may be more than one *.pft_id.

Table C-18 Entity Node Record Example

id dnpoint.pft_id containing_face first_edge coordinate
1 936 2 Null 10.56 37.91
2 937 2 Null 10.36 37.72
3 953 2 Null 10.15 37.86

b. Connected node primitive. The connected node primitive table (cnd) is
composed of three columns: a primary key, a foreign key (to the edge table),
and the node coordinates. The containing_face null column is included to
maintain compatibility with the entity node primitive. The first_edge column
is a foreign key required for level 1 and higher topology levels to maintain a
topological relationship to the edges that include the node. The complete set
of edges around a connected node may be assembled by following the
topology of the connected node until the first edge reappears.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 45

Refer to Appendix C2 for more discussion of this algorithm. A connected
node table is required for any coverage of topology level 1-3 containing an
edge table. If the optional feature pointer is used, connected nodes that are
not features will carry a null in that field. Table C-19 defines the connected
node primitive. Table C-20 illustrates a connected node table with data for
four of the connected nodes shown in Figure C-18.

Table C-19 Connected Node Definition

Column Name Description Column Type Key Type Op/Man
id Row id I P M
*.pft_id Feature id I N OF
containing_face (Null) X N O
first_edge Edge id K/I N M1–3
coordinate Coordinates C/Z/B/Y/G/

H/V/W
N M

Note: The asterisk (*) indicates a placeholder for the point feature class name. There may
be more than one *.pft_id.

Table C-20 Connected Node Record Example

id dn.pft_id containing_face first_edge coordinate
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
343 42 Null 330 10.63 37.72
344 Null Null 333 10.49 37.73
345 Null Null 330 10.61 37.80

c. Node primitive. The node primitive table (nod) is an optional method of
modeling the entity and connected nodes within a single table. The node
primitive contains up to four mandatory columns, depending on the level of
topology. The mandatory id column contains the row id and is the primary
key. The containing_face column is a foreign key to the face table for
topology level 3. It is used for all entity nodes associated with point features
which do not fall on an edge. The first_edge column is a foreign key to the
edge table for topology levels 1-3. It is used for all connected nodes. Within
the node table any single record will contain a valid value for either the
containing_face or first_edge. One of these values must be null. The
coordinate column is mandatory. A node table is required for any coverage of
topology level 1-3 containing an edge table. Table C-21 defines the node
table. Table C-22 illustrates a node table.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 46

Table C-21 Node Table Definition

Column Name Description Column Type Key Type Op/Man
id Row id I P M
*.pft_id Feature id I N OF
containing_face Face containing node I N M3
first_edge Edge id K/I N M1-3
coordinate Coordinates C/Z/B/Y/G/

H/V/W
N M

Note: The asterisk (*) indicates a placeholder for the point feature class name. There may
be more than one *.pft_id.

Table C-22 Node Record Example

id dnpoint.pft_id containing_face first_edge coordinate

1
2
3
.
.
.
343
344
345

936
937
953
.
.
.
42
Null value
Null value

2
2
2
.
.
.
Null value
Null value
Null value

Null value
Null value
Null value
.
.
.
330
333
330

10.56 37.91
10.36 37.72
10.15 37.86
.
.
.
10.63 37.72
10.49 37.73
10.61 37.80

C.2.3.2.2 Edge Primitive

The edge primitive table includes up to eight mandatory columns, depending on the level
of topology. The mandatory id column contains the row id and is the primary key. An
optional edge_type column allows for the encoding of defined circular arcs. The
start_node and end_node columns are foreign keys to the node primitive and are
mandatory for levels 1-3. The right_face and left_face columns are foreign keys to the
face table and are mandatory for level 3 topology. The right_edge and left_edge columns
are foreign keys to the edge table and are mandatory for levels 1-3. The coordinates
column is mandatory. For simplicity in drawing edges, the coordinate string includes the
node coordinates at each end, regardless of the existence of a node primitive. Thus, the
minimum length of the coordinate string, is two pairs, except for defined circular arcs
where there must be three and only three coordinate pairs. Appendix C2 describes winged-
edge topology in more detail.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 47

a. Node information. The foreign keys to the node table are required for level
1,2 and 3 topology to maintain a topological relationship to the node
connected to the edge. The start node indicates the beginning of the edge, and
the relationship of the start node to the end node defines the edge orientation.

b. Edge information. Two foreign keys, right and left edge, are required for
level 1, 2, and 3 topology, establishing connectivity between each edge and its
neighboring edges in the coverage network. The right and left edges establish
winged-edge topology for both line networks and faces. If all the edges
incident at a node are sorted according to the bearing each edge radiates from
that node, the right edge of a particular edge is the first edge encountered,
counterclockwise in the sort order, around the end node of that particular
edge. Similarly, the left edge is the first edge encountered around the start
node.

c. Face information. When faces are present (level 3 topology), the right and
left face columns are added to the edge primitive table. Depending on the
edge direction, the face columns are assigned. When a face is split by a tile
boundary, the internal tile boundary is used to close the face on each tile. The
tile id and external face id are also maintained in the triplet id.

Table C-23, defines the edge table. Table C-24 illustrates an edge table created from data
shown in Figure C-18.

Table C-23 Edge Table Definition

Column Name Description Column Type Key Type Op/Man
id Row id I P M
**.lft_id Feature id I N OF
edge_type Defines edge type I N O
start_node Start node id I N M1–M3
end_node End node id I N M1–M3
right_face Right face id K/I N M3
left_face Left face id K/I N M3
right_edge Right edge id from end

node
K/I N M1-M3

left_edge Left edge id from start
node

K/I N M1-M3

coordinates Coordinates C/Z/B/Y/G/
H/V/W,*

N M

Notes: The (**) indicates a placeholder for the line feature class name.
There may be more than one **.lft_id.

The edge_type is used to differentiate those edges whose coordinates are to be
joined by straight lines (column is absent or an edge_type value of '1' is used) and
those that are formed by defined geometric circular curves (edge_type 2 or3).

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 48

In the latter case there must be three coordinates only, whose meanings are defined
as follows:

edge_type Co-ordinate 1 Co-ordinate 2 Co-ordinate 3
2 start point centre point end point
3 start point mid-point end point

Note that though the strict geometry only requires that the second coordinate for
edge-type=3 lies anywhere on the arc to be drawn, the accuracy of the arc will be
maximized if it lies close to the mid point of the arc. This is shown in figure C-
18A.

Figure C-18A Geometry for Geometric Circular Arcs

For edge_type=2, the arc must be drawn in a clock-wise manner from the start point until
the end-point is reached. The distance from centre_point to start_point is to be taken as the
radius of the arc. The end_point must be located on the arc. In the event of a discrepancy,
the arc should be terminated where it crosses the straight line vector produced by joining
the centre_point and end_point, extended as necessary. A complete circle will be drawn if
the start_point and end_point are coincident.

For edge_type=3, the direction of the arc is inherent in its definition. A complete circle will
be defined by coincident start_point and end_point coordinates with the mid_point lying at
the diametrically opposite point on the circle.

Note that where a feature utilizes any geometric arc the generated vector should be used
when calculating the necessary bounding rectangle. Implementers should note that
extremely shallow curves defined by edge_type=2 may be difficult to represent correctly
given the precision of calculation available. Similarly, computational problems may occur
if the midpoint for edge_type=3 is positioned too close to the start or end point of a curve.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 49

Table C-24 Edge Record Example

Coordinates
id line et sn en rf lf re le start node...end node

.

.

.
328 24500 1 346 362 3 2 339 334 10.46 37.38...10.68 37.00
329 24502 1 346 360 2 3 338 328 10.46 37.38...10.06 37.09
330 24505 1 343 345 2 2 330 330 10.63 37.72...10.61 37.80
331 24524 1 348 347 2 2 331 331 10.53 37.93...10.58 37.53
332 24534 1 349 349 4 2 332 332 10.26 37.36...10.26 37.36
333 24569 1 344 350 2 2 333 334 10.49 36.73...10.20 36.94
334 24573 1 344 346 2 2 329 333 10.49 36.73...10.46 37.38
335 24575 1 353 351 2 2 335 335 10.18 36.38...10.20 36.73
336 24581 1 352 352 2 5 336 336 10.20 36.81...10.20 36.81
337 24585 1 357 357 2 6 337 337 10.15 36.46...10.15 36.46
338 -

32767
1 360 362 2 1 328 339 10.06 37.09...10.68 37.00

339 -
32767

1 360 362 1 3 338 329 10.06 37.09...10.68 37.00

340 24601 1 354 358 2 2 343 340 10.13 36.72...10.04 36.78
341 24603 1 359 359 2 7 341 341 10.04 36.61...10.04 36.61
342 24612 1 355 356 2 2 342 342 10.10 36.40...10.02 36.50
343 24626 1 361 358 2 2 340 343 10.02 36.71...10.04 36.78
344 24635 2 384 385 9 8 392 396 10.04 36.31, 10.04 36.27, 10.08 36.27
345 24639 3 393 397 10 11 381 386 10.25 37.37, 10.42 37.30, 10.49 37.13

Note: line = **.lft_id, sn = start_node, en = end_node, rf = right_face, lf = left_face,
re = right_edge, le = left_edge. Only start and end node coordinates are shown, although
all coordinates would actually be present in this variable-length column. For values of
edge_type equal to 2 or 3 there must be three and only three values in the coordinates
column.

C.2.3.2.3 Face Primitive

Faces are defined as planar regions enclosed by an edge or a set of edges except for the
universe face which is unbounded. All faces are defined by one or more rings, which are
connected networks of edges that compose the face border. Each ring starts with a
reference to a particular edge, and is defined by traveling in a consistent direction. The left
and right edge columns on the edge primitive are traversed, always keeping the face being
defined on one side, until the ring returns to its starting edge. All faces must have one and
only one outer ring, which bounds the exterior. A face may require inner rings to represent
areas belonging to other faces that it encloses totally. Inner rings and outer rings are
disjointed. There is no upper limit on the number of inner rings. A ring table (see below)
is defined to handle these disjointed rings. A ring within a ring contained within a face
(e.g., a lake within an island which is contained within a larger lake) has no direct
topological relation to the outer face (the larger lake). Face primitives are implemented as
follows.

a. Face table. The face table contains two columns, where the primary key id
identifies the face and the ring_ptr column points to the outer ring in the ring
table. Face id 1 is always reserved for the universe face in a face table; it will
never correspond to a feature in the feature table.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 50

The outer ring of the universe face is a topological artifact which does not
have a geometric representation. The outer ring cannot be displayed. The
common boundary between the universe face and all other faces constitutes
the inner ring or rings of the universe face. Inner rings of the universe face
behave the same as the rings of other faces. Table C-25 defines the face table.
Table C-26 depicts an example of the face table for three faces from Figure C-
18.

Table C-25 Face Table Definition

Column Name Description Column Type Key Type Op/Man
id Row id I P M3
*.aft_id Feature id I N OF
ring_ptr Ring id I N M3

Notes: The asterisk (*) indicates a placeholder for the area feature class name.
There may be more than one *.aft_id.

Table C-26 Face Record Example

id dnarea.aft_id ring_ptr

1
2
3
4

Null
4571
4572
4573

1
3
13
14

b. Ring table. The ring table contains one reference to the edge table for each
ring of a face. The first row in the ring table for each face refers to the outer
ring of that face. Because the outer ring for face 1 (universe face) is a
topological artifact, its start edge will be null. Each inner ring has one
reference to a first edge on that ring. The ring table maintains an order
relationship for its rows. The first record of a new face id will always be
defined as the outer ring. Any repeating records with an identical face value
will define inner rings. Table C-27 defines ring table structure, and Table C-
28 depicts eight rings from Figure C-18 and follows the face example in Table
C-26.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 51

Table C-27 Ring Table Definition

Column Name Description Field Type Key Type Op/Man
id Row id I P M3
fac_id Face id I N M3
start_edge Edge id I N M3

Table C-28 Ring Record Example

id fac_id start_edge

1
2
3
4
5
6
7
8
9
10
11
12
13
14

1
1
2
2
2
2
2
2
2
2
2
2
3
4

Null
339
328
330
331
336
332
335
337
342
341
343
339
332

C.2.3.2.4 Text Primitive

Text is implemented to allow the representation of names associated with vague or ill-
defined regions, such as the Appalachian Mountains or by reference to other features. The
text primitive is normally composed of three items: a primary key, the text string, and a
coordinate string defining a shape line. Optional attributes may also be associated with the
primitive, such as text color or font height.

The shape line must contain at least one coordinate pair. If the shape line contains only
one coordinate pair, the coordinate pair is considered to represent the lower left coordinate,
and the default orientation for the shape line will be assumed (minimum readable text and
parallel to X axis.) In order to specify orientation, two coordinate pairs must be entered.
The second coordinate pair defines the lower right of the string. Some fonts have
ascenders and descenders that extend above or below the shape line. Third and subsequent
coordinate pairs define control points in a shape line. The control points of a shape line
define a continuous function. Characters in a text string are individually oriented along the
shape line.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 52

Table C-29 defines the text primitive table structure. Table C-30 is a hypothetical example
of a text primitive table.

Table C-29 Text Primitive Structure Table

Column Name Description Column Type Key Type Op/Man
id Row id I P M
**.tft_id Feature id I N OF
string Text string T/L/M/N,* N M
shape_line Coordinates C/Z/B/Y/G/

H/V/W,*
N M

Note: The (**) indicates a placeholder for the text feature class name. There may be more
than one **.tft_id.

Table C-30 Text Primitive Record Example

id dntext.tft_id string shape_line
1

2

3

4

529

530

531

532

Fiume Salso

Simeto

Belice

Dittaino

14.41,37.74 14.45,37.73
14.52,37.69 14.60,37.69
14.80,37.71 14.81,37.68
14.80,37.66 14.81,37.65
12.91,37.69 12.93,37.71
12.95,37.73
14.51,37.56 14.54,37.55
14.58,37.56 14.62,37.57

C.2.3.2.5 Minimum Bounding Rectangle Table

A minimum bounding rectangle record is required for each record in an edge or face
primitive table. Since the outer ring of the universe face is a topological artifact which
does not have a geometric representation, the fbr record for face 1 should contain nulls for
xmin, ymin, xmax and ymax. The definition found in Table C-31 is used for both the face
and edge minimum bounding rectangle tables. Coordinate values are as defined in the
Geographic Reference Table (grt), Table C-42. Table C-32 is an example of the face
minimum bounding rectangle table used for Figure C-18.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 53

Table C-31 Minimum Bounding Rectangle Definition

Column Name Description Column Type Key Type Op/Man
id Row id I P M
xmin Minimum x coordinate F/R/S/I N M
ymin Minimum y coordinate F/R/S/I N M
xmax Maximum x coordinate F/R/S/I N M
ymax Maximum y coordinate F/R/S/I N M

Table C-32 Face Bounding Rectangle Record Example

id xmin ymin xmax ymax

1
2
3

Null
12.31
14.54

Null
37.97
37.83

Null
13.31
14.58

Null
37.99
37.85

C.2.3.2.6 Z-value Differences at Edge Intersections

The 2D-planar data model used by VPF requires the existence of a node at a single-
coordinate intersection (x,y or x,y,z) where edges cross. The following tables provide a
method of storing the true Z-value for edges intersecting where disjoint Z-values occur.
The use of these tables is limited to two specific occurrences:

- edges cross at different elevations, with or without a node feature (e.g., an
overpass or bridge over a road) at the intersection
- edges cross at grade, single elevation, and a node feature exists at a different
elevation than the edges (e.g., a hanging stop light in the middle of an intersection)

When either case occurs, the coordinate Z-component of the connected node and the
associated first or last coordinate Z-component in the intersecting edges will be filled with
the null value for that coordinate type (e.g., NaN for floating point or the integer null
value). The true Z-value will be described in a related attribute table associated with the
edge and connected node tables. The related attribute table will be stored at the same
directory level as its associated edge and connected node tables.

The capability defined in this clause specifically applies only to instances of single-point
edge intersections and is implemented at the geometry level. When the proper VPF
structures are implemented, it continues to support the storage of coincident features where
the features are associated with a single primitive at a single Z-value. It does not support
the storage of coincident features at different Z-values.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 54

a. Edge node Z's. Z-values for intersections (start node or end node) where
disjoint Z-values occur will be stored in a table named zcoin.rat (Table C-32A). Only those
edges associated with a disjoint Z-value at a node will be linked to the zcoin.rat. Each
record in the zcoin.rat will contain the true edge elevation at the node and a reference to the
connected node. There will be a record in the zcoin.rat for each elevation at the connected
node where disjoint Z-values occur. Thus, a 4-edge intersection representing a road
overpass would have two entries in the zcoin.rat (Table C-32B), one for each elevation for
the intersecting edges. Each record in the join table linking the edge table to the zcoin.rat
will contain the edge id and the zcoin.rat id where that edge’s start or end point elevation
value is defined (Table C-32C). The edge table start or end node coordinate Z-value will
be filled with null for those edge nodes included in the zcoin.rat.

b. Connected Node Z's. Z-values for connected nodes at locations where disjoint
Z-values occur will be stored in the zcoin.rat (Table C-32A). Each connected node
requiring an elevation will be linked to a single record in the zcoin.rat through a join table
(cnd.rjt). Each record in the join table linking the connected node table to the zcoin.rat will
contain the connected node id and the zcoin.rat id (Table C-32D). Only one entry will be
recorded in the cnd.rjt for each connected node. The elevation referenced by the connected
node may either coincide with one of the edge nodes or it may represent a feature with an
elevation different from any of the intersecting edges. Each connected node referenced in
the zcoin.rat will have a null value in its cnd table coordinate Z-component.

Table C-32A zcoin Related Attribute Table Definition

Column Name Description Field Type Key Type Op/Man
id Row id I P M
cnd_id Connected node id I N M
z_value Value of true Z F/R/S/I N M

Table C-32B zcoin Related Attribute Table Example

id cnd_id z_value
1 15 10.1234
2 15 1.23456
.
.

.

.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 55

Table C-32C Edge start/end Node Join Table for Disjoint z-values.

Column Name Description Field Type Key Type Op/Man
id Row id I P M
edg_id Edge id I N M
zcoin.rat_id zcoin id I N M

Table C-32D Connected Node Join Table for Disjoint z-values.

Column Name Description Field Type Key Type Op/Man
id Row id I P M
cnd_id Connected node id I N M
zcoin.rat_id zcoin id I N M

c. Primitive Expansion Schema Table. When the zcoin.rat table is used to store Z-
values for edges and connected nodes, a Primitive Expansion Schema Table (pes) is
required at the coverage level to define the additional relationship of the primitive tables to
the related attribute table. Only the primitive-to-related attribute table relationships are
stored in the Primitive Expansion Schema Table. The Primitive Expansion Schema Table
is defined in Table C-32E below. An example Primitive Expansion Schema Table is
shown in Table C-32F.

Table C-32E Primitive Expansion Schema Table Description.

Column Name Description Field Type Key Type Op/Man
id Row id I P M
prim_table Primitive table name T,8 N M
table1 First table in a

relationship
T,12 N M

table1_key Join column in the first
table

T,* N M

table2 Second table in a
relationship

T,12 N M

table2_key Join column in the
second table

T,* N M

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 56

Table C-32F Primitive Expansion Schema Table Example

id prim_table table1 table1_key table2 table2_key
1 cnd cnd id cnd.rjt cnd_id
2 cnd cnd.rjt zcoin.rat_id zcoin.rat id
3 cnd zcoin.rat id cnd.rjt zcoin.rat_id
4 cnd cnd.rjt cnd_id cnd id
5 edg edg id edg.rjt edg_id
6 edg edg.rjt zcoin.rat_id zcoin.rat id
7 edg zcoin.rat id edg.rjt zcoin.rat_id
8 edg edg.rjt edg_id edg id

C.2.3.3 Feature Class

A feature class is composed of a variety of tables containing geometric, topological, and
attribute data. Complex feature relationships can be defined. Feature-to-feature logical
relationships can be defined. Some features may require a single feature and an associated
primitive table, while others may need multiple tables linking features into a complex
hierarchy. Attribute data may be extended by the use of related attribute tables (rat)
associated with feature or primitive tables. An additional use of related attribute tables
would be to provide information on sources used for features and attributes within a
coverage using a source.rat. Implementation (type of information stored per source) is
product specific.

A feature minimum bounding rectangle table may be included for each feature table as
defined in Table C-31. The feature class definition is provided by a product specification.

Constructing feature classes requires the use of feature tables. If necessary, the feature
class definition may require the use of a feature join table to accurately construct the
feature in relational form. Appendix C3 describes feature class relationships in greater
detail.

C.2.3.3.1 Feature Tables

A feature table consists of a feature identifier and one or more attribute columns. The
specific nature of the attribute shall be described in a product specification.

Table C-33 defines feature table contents for simple features that are linked to only one
spatial element (i.e. a single primitive record). If the coverage is tiled, the feature table,
for simple features, maintains two columns that identify the tile id and primitive id that are
related to the feature. This primitive_id column is named after the primitive table it relates
to, followed by "_id". The tile id is named tile_id. The column from_to is optional and is
used to provide directionality of a line feature with respect to its edge primitive(s).

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 57

A from_to value of 1 means the feature has the same orientation as its related primitive(s);
a value of -1 means opposite orientation.

Table C-33 Feature Table Definition (1:1 or N:1)

Column Name Description Column Type Key Type Op/Man
id Feature primary key I P M
tile_id Tile id S N MT 1
 *_id 2 Primitive id S/I/K N M
<attribute n> (nth description) Any Any M 3
from_to Line feature orientation S N O4

Notes:
1. If primitive id column is of type K, then no tile reference id column is required.
2. The asterisk (*) indicates a placeholder for the primitive table name: edg, fac, nod,

or txt.
3. A minimum of one attribute is required for any table. If the table does not contain

tile_id and/or *_id columns, an attribute column will be mandatory. Any additional
attributes are optional.

4. Optional for line feature tables only.

Table C-33A defines feature table contents for compound simple features that are linked to
one or many spatial elements (i.e. one or many primitive records) through a feature join
table. The three fields, tile_ id, *_id, and from_to, of table C-33A belong then to the
Feature Join Table.

Table C-33A Feature Table Definition (1:N or N:M)

Column Name Description Column Type Key Type Op/Man
id Feature primary key I P M
<attribute n> (nth description) Any Any M 1
**.ajt_id2 "Area to Edge" Feature

Join Table id3
S/I N O3

Notes:
1. A minimum of one attribute is required for any table. Any additional

attributes are optional.
2. The asterisk (**) indicates a placeholder for the join table name: *.ajt

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 58

3. For area feature tables only. A link to a special feature join table that defines
edges composing the boundary(ies) of area features in topology levels 0,1,2
and provides an efficient way to identify boundaries for multi-faced areas in
topology level 3. Refers to the first record describing the area feature.
Mandatory for area features in topology levels 0, 1, and 2, the tile_id and *_id
fields are then omitted. Optional for area in topology level 3.

Table C-33B defines feature table contents for complex features that are linked to one or
many feature tables through one or many feature join tables.

Table C-33B Complex Feature Table Definition

Column Name Description Column Type Key Type Op/Man
id Feature primary key I P M
<attribute n> (nth description) Any Any M 1

All feature class definitions fall into one of five categories: area, line, point, text, and
complex features.

[Area feature - Level 3] An area feature is composed of one or more face primitives. The
Area_to_Edge join table is an optional index that speeds area cycles when areas consist of
many faces, possibly in more than one tile. The primitive id column will be fac_id.

[Area feature - Levels 2, 1, 0] An area feature is defined by a set of edges which are
related to the area feature through a specific area feature join table called the Area_to_Edge
join table. This table lists the edges in sequence first, moving in a clockwise direction
around the single outer most boundary of the area, and then moving counterclockwise
around the boundaries of any inner areas or voids. The Area Feature Table will be as
defined in table C-33A even if all area features are described by a single outer edge.

Table C-34 Area_to_Edge Join Table Definition

Column Name Description Column Type Key Type Op/Man
id Row id I P M
*.aft_id 1 Feature id I N M
tile_id Tile id S N MT
edg_id Signed Edge Primitive

ID or area flag 2
S/I N M

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 59

Notes:
1. The asterisk (*) is a placeholder for the area feature class name.
2. The edg_id field is assigned a positive or negative value to indicate the

orientation of the edge in sequencing around the boundary of an area feature.
The absolute value is used for the edge reference. If inner areas or voids are
present, the edg_id field is assigned a zero (0) value to indicate when an area
boundary cycle has been completed. The next edge value, after a zero flag,
will be the first edge of an inner area or void.

Line feature. Line features are composed of edge primitives. The primitive id column
name will be edg_id. A linear river feature will typically contain attributes such as;
jurisdiction, depth, and width. from_to is an optional column used to provide directionality
of a line feature with respect to its edge primitive(s). A from_to value of 1 means the
feature has the same orientation as its related edge(s). A value of -1 means the feature has
the opposite orientation.

Point feature. A point feature class contains node primitives, but can have numerous
attributes describing the feature. The primitive column name will be nod_id (end_id or
cnd_id if nodes are modeled as separate tables). An airport point feature, for example may
contain many attributes such as the number of runways, number of terminals, elevation,
and size.

Text feature. A text feature class is composed of a text primitive. The primitive column
name will be txt_id. The text feature usually contains additional attributes, such as font,
color, and font size. Font type, color, and size are sometimes included in a related attribute
table.

Complex feature. Complex features can be constructed from any combinations of features
within a coverage. The previous airport example could be redefined to include point, line,
and area feature classes, when this composition is required for specific applications.
Complex features cannot be recursively defined.

Features may have distinct relations such as stacked-on (STK), stacked-under (STU),
conjunction (CON), disjunction (DIS), or alternative (ALT) representations (refer to Part 2,
Clause One, Paragraph 5.1.1.3 for an explanation of relations between features). When
preserving this type of information, an optional feature relations join table (fjt) may be
invoked. Table C-35 defines the fjt implementation required to maintain feature relations
in a coverage.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 60

Table C-35 Feature Relations Join Table (Coverage Level) Definition

Column Name Description Column Type Key Type Op/Man
id Record id number I P M

*_id 1 id of feature which has a
relation

I N M

rel_type type of relationship
(STK or STU, CON or
DIS, ALT)

T,3 N M

**_id 2 id of feature to which
the relationship applies.

I N M

Notes:
1. The asterisk (*) indicates a placeholder for the feature class name of the first

table in the relationship.
2. The double asterisk (**) indicates a placeholder for the feature class name of

the second table in the relationship. Separate feature relations join tables will
be required for each two table combination which have these relations

The above feature relationships may be maintained across coverages. This requires a
Feature Relations Join Table at the library level. This table will store the type of feature
relation in addition to the coverage id, feature class id and feature id for the respective
features. Table C-35A defines the fjt implementation required to maintain cross coverage
feature relations.

Table C-35A Feature Relations Join Table (Library Level) Definition

Column Name Description Column Type Key Type Op/Man
id Record id number I P M

cov1_id Coverage id (from Coverage
Attribute Table)

I N M

fc1_id Feature Class id (from
Feature Class Attribute
Table in coverage 1)

I N M

fea1_id 1 id of feature which has a
relation

I N M

rel_type Type of relationship (STK or
STU, CON or DIS, ALT)

T,3 N M

cov2_id Coverage id (from Coverage
Attribute Table)

I N M

fc2_id Feature Class id (from
Feature Class Attribute
Table in coverage 2)

I N M

fea2_id 2 id of feature to which the
relationship applies.

I N M

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 61

Table C-35B Feature Relations Join Table (Library Level) Example

id cov1_id fc1_id fea1_id rel_type cov2_id fc2_id fea2_id
.
5 9 12 23 STK 4 6 67
6 9 12 1124 STK 2 15 154
7 9 13 9898 STK 4 6 67
.
22 7 4 34 STU 8 3 11240
23 7 11 445 STU 9 22 667
.

Features may have alternative relationships when they are represented in the different
libraries. For example, a bridge may be a line feature in a relatively high resolution library,
and as a point in a lower resolution library. A Unique Identification (UID) may be
assigned as an attribute of this particular bridge. Whenever the bridge occurs in a library,
the UID signifies that it is that particular bridge.

C.2.3.3.2 Feature Join Tables

Join tables are used to implement one-to-many relationships and/or many-to-many
relationships between tables. They allow a variety of constructs to be made: between a
feature table and a primitive table, between feature tables (for complex features), and
between a feature table and an attribute table. A join table is used to relate one column in a
table with a column in a second table. This is common when a 1:N relationship exists
between two tables. Thus, for example, if a complex feature has four 1:N relations with
four simple feature classes, four join tables will be used. The content and number of join
tables depend on the coverage design and is defined in the Product Specification. The
feature class schema table (fcs) documents all of the relationships for each feature class.
Unlike the feature table format that is dependent on the category (area, line, point, text, and
complex), the same join table format is applicable to all feature classes. In the description
below, a feature to primitive join relationship is modeled using the structure presented in
Table C-36. Together with the Feature Class Schema (fcs) table, this table structure can be
utilized to represent other relationships; such as, relationships defined among features,
among primitives, and so forth. Since joins are fully described in the fcs, there is usually
no predetermined requirement on the join table columns. Furthermore, unless one of the
tables in the join relation is a primitive table in a tiled coverage, the tile_id column is
generally not necessary. Table C-36 defines join table contents. The second column
contains the key of the first table in the join. The name of this column is the table's name
followed by "_id." The fourth column contains the key of the second table in the join; it is
similarly labeled using the table name and the "_id" suffix. For instance, in a feature table
(sdrpoint.pft) relating to a primitive (nod), the key for the first table is sdrpoint.pft_id and
the key for the second table is nod_id. The feature class schema table is used to express the
column names for the join table. The tile_id column is mandatory when tiled directories
exist in the coverage and the join table relates a feature table and a primitive table.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 62

Refer to clause C.2.3.3.3 concerning these columns when tile directories exist in the
coverage.

Table C-36 Feature Join Table Definition

Column Name Description Column Type Key Type Op/Man
id Row id I P M
*_id 1 Table 1 id I N M
tile_id Tile id S N MT/ O 3
**_ id 2 Table 2 id I/S/K N M
from_to Linear feature

orientation
S N O4

edit_date Date of collect/edit
operation

D N O5

attribute6 Affected attribute name T,* N O5

Notes:
1. The asterisk (*) indicates a placeholder for the name of the first table in the

join, usually a feature table name.
2. The (**) indicates a placeholder for the table name of the second table in the

join, usually one of edg, fac, nod, or txt.
3. If primitive id column is of type K, then no tile reference id column is

required. Tile_id is also not required if this is a join between two feature
tables, as in complex features, or between a feature table and an attribute
table.

4. Optional for line features only.
5. Optional for join tables linking feature tables to source.rat.
6. A null value in this field signifies that the entire feature is affected.

C.2.3.3.3 Feature-to-Primitive Relations on Tiled Coverages

If the coverage is tiled, the feature or join table maintains a triplet id column that identifies
the tile id and primitive id that are related to the feature. Alternatively, the tile id and the
primitive id can be stored in separate columns. The triplet id column is named after the
primitive table it relates to, followed by "_id". The first field in the triplet id is null. The
second field is the tile id (found in the tile reference coverage); the third field is the
primitive row id in that tile. If the relation between the primitive and the feature is made
using a join table, then this relation will be stored in the join table.

C.2.3.3.4 Feature-to-Feature Connectivity

VRF supports the identification of feature-to-feature connectivity for network analysis.
This is implemented using a separate point feature table (related to the connected node)
which links to a connectivity related attribute table through a join table. The point feature
table will have: row_id and tile_id/cnd_id (or nod_id). The related attribute table will
contain: row_id, fc_id/feature_id/true azimuth for the first feature, fc_id/feature_id/true

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 63

azimuth for the second feature and a connectivity code for the two feature relation.
Connectivity can be: F - forward only (only from the first feature to the second feature), R -
reverse only (only from the second feature to the first feature) or B - bi-directional.

At each connectivity point feature, a wagon-wheel progression about the first_edge for the
associated cnd will identify all possible feature pairs (combinations) of possible
connectivity about the node. There will be a record in the related attribute table for each
viable combination about the point. There will be no records in the related attribute table
for combinations which have no connectivity or which have no line feature association.
NOTE: Product specifications may reverse the connectivity option to show only cases
where there is no connectivity.

C.2.3.3.5 Feature Stacked-on/Stacked-under

Stack-on/stacked-under relations are described in C.2.3.3.1 and are implemented through
the use of a feature relations join table (fjt). Refer to table C-35A and C-35B for a
description and example of a fjt.

C.2.3.3.6 Multi-Value Attributes

The VRF encapsulation supports multi-value attributes by the use of join tables linking
related attribute tables to feature tables.

A join table may be used to link a feature class table to a multi-value attribute related
attribute table (*.rat). When attributes with different types (ex. char and int) have multi-
attribute values within a coverage, separate rats are required for each attribute type.
Standardized coded values meaning "multiple" are used in place of the actual values which
are stored in the *.rat (see Clause C.2.3.4.4). Naming for rats is equivalent to defining
names for feature tables within a product (ex: names used for *.lft in a product).
Therefore, rat table use and naming is defined in the product specifications.

These rat tables will contain an attribute value column and an optional attribute column.
The attribute column will contain the attribute name, and is used to allow multi-attributes
of the same attribute value type (e.g. integer) in a single rat table.

Since order is important for some types of multi-value attributes, a mechanism is provided
to identify their precedence. An optional column is defined in a join table used to join a
feature table to a rat table that defines this precedence.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 64

The following illustrates these attribute relationships:

Multiple Value
Attribute Table(s)

Multiple Attribute Join
Table(s)

id feat_id pres ###.rat_id

fclass.#jt

Feature Class Table

fclass.^ft
id att1 att2

fclass.*jt
id feat_id pres ***.rat_id

###.rat
id attribute att_value

***.rat
id attribute att_value

Note: ^,*,# Actual names and extensions defined in product specification

Figure C-19 Multiple-value Attribute Relationships

The following is an example of a multi-value attribute relationship.

id feat_id pres range.rat_id
fclass.*jtfclass.#ft

id att1 att2

10 989 3

100 10 1 40
101 10 2 41
102 11 2 70
103 11 1 72

range.rat
id attribute att_value

39
40
41
42

att1
att1
att1
att1

2
3
4
5

69
70
71
72

att2
att2
att2
att2

3
6
8
9

11 9895

Figure C-20 Multiple-value Attribute Relationship Example

C.2.3.4 Coverage

Each coverage has one set of topological primitives and a collection of feature tables based
upon these topological objects. All these tables are stored in one directory and are
associated by file naming conventions (see Table C-16). The coverage may contain a data
dictionary for all feature tables in the coverage.

An optional data quality table is allowed at the coverage level.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 65

C.2.3.4.1 Coverage Relationships

The general description of a coverage is stored in the coverage attribute table of its library.
The relationships between the tables in a coverage are described by the mandatory feature
class schema table.

C.2.3.4.2 Feature Class Schema Table

A feature class schema table defines the feature classes that are contained within the
coverage. Each record in the table specifies a feature class name, the name of the two
tables involved in the join, and the names of the columns used in the join. The feature
class name must be repeated to specify all the relationships in the feature class schema
table. In the case of complex features, all relationships defining the component features
must be specified with the feature class column referencing the complex feature class.
This includes relationships between simple features and their primitives, even though these
relationships are defined in other parts of the feature class schema table. Paragraph
C3.4.7.3 of Appendix C3 contains an example of relationships in a coverage with several
simple features and a complex feature that consists of one point feature class and two line
feature classes. The topological relationships between primitive tables need not be
specified, since they are implied by table types.

The feature class schema table must be used in conjunction with the tileref area feature
table to fully define feature classes in tiled coverages.

If a key in the join is a compound key, the column names will be listed, separated by a
backslash character (\). For example, a primary key composed of two columns would be
specified as "name\type." Table C-37 defines feature class schema contents, and Table C-
38 is an example of a feature class schema table.

Table C-37 Feature Class Schema (Coverage Level) Definition

Column Name Description Column Type Key Type Op/Man
id Row id I P M
feature_class Feature class name T,8 N M
table1 The first table in a

relationship
T,12 N M

table1_key Join column in the first table T,* N M
table2 The second table in a

relationship
T,12 N M

table2_key Join column in the second
table

T,* N M

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 66

Table C-38 Feature Class Schema (Coverage Level) Example

id feature_class table1 table1_key table2 table2_key

1
2
3
4

sdrpoint
sdrpoint
sdrarea
sdrarea

sdrpoint.pft
nod

sdrarea.aft
fac

id
id
id
id

nod
sdrpoint.pft

fac
sdrarea.aft

id
id
id
id

A feature class schema table is required within the data library if "cross coverage feature
relations" are defined (see C.2.3.3.1, Table C-35A, B). The feature class schema in this
specific application is similar to the one used to store feature class relationships within a
coverage. The coverage for the feature relations are required columns in order to link the
respective feature classes to the appropriate coverage. The entry in the feature_class
column will be the feature class represented by the first feature table in the relationship.
Table C-38A defines the feature class schema table for library level relations.

Table C-38A Feature Class Schema (Library Level) Definition

Column Name Description Column Type Key Type Op/Man
id Row id I P M
feature_class Feature class name T,8 N M
cov1 The coverage of the first

table in a relationship
T,8 N M

table1 The first table in a
relationship

T,12 N M

table1_key Join column in the first
table

T,* N M

cov2 The coverage of the
second table in a
relationship

T,8 N M

table2 The second table in a
relationship

T,12 N M

table2_key Join column in the second
table

T,* N M

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 67

Table C-38B Feature Class Schema (Library Level) Example

id feature_class cov1 table1 table1_key cov2 table2 table2_key
1 roadl trn roadl.lft id hyd bridgep.pft id
2 roadl hyd bridgep.pft id trn roadl.lft id
3 towerp uti towerp.pft id cul buildp.pft id
4 towerp cul buildp.pft id uti towerp.pft id

C.2.3.4.3 Value Description Table

A value description table relates to associated feature class tables within a coverage. Vdts
are required when coded attribute values are implemented within a coverage. The two
types of vdts are integer vdt and character vdt. There will be no more than one of each per
coverage. If a column in a feature table requires a vdt, then every unique coded value will
have an entry in the vdt. Certain values (e.g., null or unknown) that are globally defined
for all columns may not appear in a vdt, however, they will be documented in the product
specifications. Table C-39 defines the format of a vdt, and Table C-40 provides an
example.

Table C-39 Value Description Table Definition

Column Name Description Column Type Key Type Op/Man
id Row id I P M
table Feature table name T,12 N M
attribute Column name T,n N M
value Unique attribute value S/I/T,n N M
description Attribute description T,* N M

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 68

Table C-40 Integer Value Description Record Example

id table attribute value description

1
2
3
4
5
6

sdrpoint.pft
sdrpoint.pft
sdrpoint.pft
sdrpoint.pft
sdrpoint.pft
sdrpoint.pft

mcc
mcc
mcc
hyc
hyc
hyc

0
21
30
0
6
8

unknown
concrete
earthen
unknown
non-perennial/intermittent/fluctuating
perennial/permanent

C.2.3.4.4 Coded Values

The table below defines common standardized coded values typically associated with
feature tables. Refer to clause C.2.5 for additional information on data syntax. Coded
character values and coded integer values are listed in the proper value description tables.
Integer values and floating point values store a “null” within the feature table. The related
information is store in a Standardized Attribute Value (sat.rat) Table and uses a join table
to link the coded value to the appropriate description. See tables C-40B, C.

Table C-40A Standardized Coded Values

Attribute Type Null/No Value Unknown Multiple Unpopulated
Not

Applicable Other
Text (T)

Fixed
Length

N/A1 UNK MUL N_P N_A OTH

Variable
Length

0 Length UNK MUL N_P N_A OTH

Coded -327682 0 989 997 998 999

Integer
Short Integer -327682 -32768 -32768 -32768 -32768 -32768
Long Integer -21474836483 -2147483648 -2147483648 -2147483648 -2147483648 -2147483648

Floating Point
Single
Precision

NaN NaN NaN NaN NaN NaN

Double
Precision

NaN NaN NaN NaN NaN NaN

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 69

Notes: The value for "Null" for each data type is defined in Table C-67.

1. If the length is one or two "-" or "--" should be used instead (refer to Clause
C.2.5.4)

2. The Null value for a short integer is defined to be the bit pattern 10000000
00000000, which is equivalent to the maximum negative number in "two's
complement number format." Therefore for a 16-bit length number, the
corresponding value for Null is -32768.

3. The Null value for a long integer is defined to be the bit pattern 10000000
00000000 0000000 0000000, which is equivalent to the maximum negative
number in "two's complement number format." Therefore for a 32-bit length
number, the corresponding value for Null is -2147483648.

Table C-40B Standardized Attribute Value Join Table

Column Name Description Column
Type

Key Type Op/Man

id Row id I P M
fea_id Feature id I N M
attribute Attribute Name T,* N M
sat.rat_id Standardized Attribute Value id I N M

Table C-40C Standardized Attribute Value (sav)

sav
code

description

1 NULL (Empty)
2 Unknown
3 Multiple
4 Unpopulated
5 Not Applicable
6 Other

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 70

C.2.3.5 VRF Library

The function of a VRF library is to organize collections of coverages that pertain to one
geographic region. Each library must manage its own spatial extent. VRF uses a minimum
bounding rectangle to define this geographic extent. VRF also supports a coverage, the
library reference coverage, which describes the library region in a graphic manner. All
reference coverages must be spatially registered and be in the same coordinate system.

Within each library, there are three mandatory tables and seven optional tables. The library
header table defines the contents of the library. The geographic reference table contains
information pertaining to the geographic location of the library. A coverage attribute table
provides a list of and descriptions for the coverages contained in the library.

If the library is tiled, there will be an untiled tile reference coverage. There will also be an
untiled library reference coverage that gives a general overview of the information
contained in the library. In addition, it is possible to include a data quality coverage. The
format for the data quality and library reference coverage follow the same rules as any
normal VRF coverage. See Appendix C5 for information concerning recommended data
quality coverage contents. Multiple records in these tables are used to describe multiple
sources, updates and maintenance issues.

C.2.3.5.1 Library Header Table

The library header table contains information identifying the library, general information
about the contents, security, and source. Table C-41 describes the group of entities that
compose the library header table.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 71

Table C-41 Library Header Table

Column Name Description of Content Column
Type

Key
Type

Op/Man

id Row id I P M
product_type Series designator of product type T,12 N M
library_name Name of library T,12 N M
description Text description of library T,100 N M
data_struct_code Highest level code for the library

 5 = Level 0 topology
 6 = Level 1 topology
 7 = Level 2 topology
 8 = Level 3 topology

T N M

scale Source scale of the library (i.e. 200)
using the representative fraction
denominator

I N M

source_series Series designator (e.g. 1501) T,15 N M
source_id Source id - number or name that

when used in conjunction with the
series and edition will identify a
unique source

T,30 N M

source_edition Source edition number T,20 N M
source_name Full name of source document T,100 N M
source_date Significant date. A designed date

that most accurately describes the
basic date of the product for
computation of the probable
obsolescence date. It can be the
compilation date or the revision date
or other depending on the product
and circumstances

D N M

security_class Security classification
T = TOP SECRET
S = SECRET
C = CONFIDENTIAL
R = RESTRICTED (or alternatively
 "FOR OFFICIAL USE ONLY"
 administrative classification only)
U = UNCLASSIFIED

T N M

downgrading Originator's permission for
downgrading required (yes or no)

T,3 N M

downgrading_date Date of downgrading (null if answer
to previous entity is yes)

D N M

releasability Releasability restrictions T,20 N M
edition_number Edition number for this library T,10 N O

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 72

edition_date Creation date of this library D N O
encapsulation Coverage encapsulation

BASIC TEXT (L)
Code identifying the encapsulation
primarily used for the transmission of
this Dataset [Library]
A = ISO 8211 (Annex A)
B = ISO 8824 (Annex B)
C = VRF (Annex C)
D = IIF (Annex D)
X = Mixed encapsulations
Must be present when the
encapsulation is not homogeneous
within the library.

T N O

C.2.3.5.2 Geographic Reference Table

This table (Table C-42) contains four groups of fields that define the geographic
parameters of the library. These field groups are the geographic parameters, projections,
registration points table name, and diagnostic points table name. The geographic
parameters in this table serve two purposes. Firstly, they are for descriptive documentation
of the coordinate reference system used in the database. Secondly, they allow multiple
separately published libraries to be inversely projected into a common coordinate system
for display and query. If the database is maintained in unprojected geographic coordinates,
the projection code and its corresponding projection parameters need not be included in the
table. (Refer to Part 3 clause 6 for valid values in datum codes, projection codes, and unit
of measure codes.)

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 73

Table C-42 Geographic Reference Table

Column Name Description of Contents Field
Type

Key
Type

Op/Man

id Row id I P M
data_type Type of coordinate data in the library T,3 N M
units Units of measure code for X and Y

coordinates in library (Units must be
consistent with the data_type)

T,3 N M

ellipsoid_name Name of ellipsoid of the library T,* N M1

ellipsoid_code Ellipsoid code T,3 N M1

ellipsoid_detail Details about library ellipsoid T,50 N O
vert_datum_name Name of vertical datum reference T,* N M
vert_datum_code Code of vertical datum reference T,4 N M
vert_units Units of measure code for Z values T,3 N O
sound_datum_name Name of sounding datum T,* N M
sound_datum_code Code of sounding datum reference T,4 N M
sound_units Units of measure code for soundings T,3 N O
geo_datum_name Name of geodetic datum T,* N M
geo_datum_code Code of geodetic datum T,4 N M
projection_name Name of the projection T,* N O2

projection_code Code of the projection
(null if geographic coordinates)

T,2 N O3

parameter1 Projection parameter 1 F N O3

parameter2 Projection parameter 2 F N O4

parameter3 Projection parameter 3 F N O4

parameter4 Projection parameter 4 F N O4

false_origin_x False Easting origin of projection F N O5

false_origin_y False Northing origin of projection F N O5

false_origin_z False origin for Z values F N O5

reg_pt_table Registration point table T,12 N O
diag_pt_table Diagnostic point table T,12 N O

Notes:
1. Either one or the other of ellipsoid_code or ellipsoid_name is mandatory.
2. Mandatory for data types MAP and DIG. Not used for data type GEO.
3. Mandatory only when projection_name is present.
4. May be used when projection_name is present
5. Present only when relevant.

Data_type in this table is type of coordinate system (Part 2 – 10.1.2)
See Part 3 Clause 6 for further details on geodetic parameters.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 74

C.2.3.5.3 Coverage Attribute Table

This table contains the coverage name and topology level for each coverage in the library.
Only those coverages which actually exist within a specific library will be listed in that
library's coverage attribute table. The topological level associated with each coverage
determines the nature of geometric and topological information available on that coverage.
Table C-43 defines coverage attribute table entities. Table C-44 is an example of a
coverage attribute table.

Table C-43 Coverage Attribute Table Definition

Column Name Description Column Type Key Type Op/Man
id Row id I U M
coverage_name The coverage name T,8 P M
description Description string T,* N M
level The topological level I N M
encapsulation Coverage encapsulation

BASIC TEXT (L)
Code identifying the
encapsulation primarily
used for the
transmission of this
Dataset [Library]
A = ISO 8211 (Annex
A)
B = ISO 8824 (Annex
B)
C = VRF (Annex C)
D = IIF (Annex D)
X = Mixed
encapsulations
Must be present when
the encapsulation is not
homogeneous within the
library.

T N O

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 75

Table C-44 Coverage Attribute Table Example

id coverage_name description level

1
2
3
4
5
6

ind
veg
aer
iwa
gtr
phy

Industry
Vegetation

Aeronautical
Inland Water

Ground Transportation
Physiography

3
3
3
3
3
3

C.2.3.5.4 Tile Reference Coverage

A library which contains tiled partitions will require a tile reference coverage, tileref, with
associated area feature and attribute tables. Thus, if the tile reference coverage does not
exist in a library, then no tiling scheme exists. The tile reference coverage consists of a set
of faces identifying the tiles that the library uses to subdivide the region of interest. Tile
attributes are used to optimize retrievals. At the library level, the tile geometry is simple,
describing the location of the tile boundaries.

C.2.3.5.4.1 Tile Attributes

The tile attributes are located in the area feature table of the tile reference coverage. This
table maintains a unique id and its associated tile directory name. This directory name
contains the path name relative to the coverage level. Additional columns may exist for
every feature class or coverage located in the library, but this is optional.

When the tile_id column is used in a table, the value relates to the id column in the
tileref.aft.

Table C-45 defines the tile reference coverage attribute columns. Table C-46 is an
example of a tile reference coverage area feature table.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 76

Table C-45 Tile Reference Area Feature Table Definition

Column Name Description Column Type Key Type Op/Man
id Row id I P M
tile_name Tile name T,n (n<=64) U M
fac_id Face id S/I/K N M
origin Coordinates of tile origin C/Z/B/Y/G/H/V/W N O1

scale Scale factor for tile
coordinate conversion

S/I N O

Note:
1. Present if primitive coordinates are relative coordinates and are offsets to this origin.

Table C-46 Tile Area Feature Record Example

id tile_name fac_id

1
2
3
4

MJ12
MJ22
MJ23
MJ24

5
7
2
3

C.2.3.5.5 Registration Point Table

The registration point table includes columns for the longitude (or easting), latitude (or
northing) and elevation of ground points selected as registration points. This table also
includes columns for the corresponding local x, y and z coordinates of registration points.
Each registration point in this table is identified by a row id and a registration point id. The
geographic reference table contains an optional column containing the registration point
table name, which carries the file extension .rpt. (See Table C-47.)

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 77

Table C-47 Registration Point Table

Column Name Description of Contents Field
Type

Key
Type

Op/Man

id Row id I P M
reg_pt_id Registration point id I N M
reg_long Longitude (or Easting) of

registration point
F/R/S/I N M

reg_lat Latitude (or Northing) of registration
point

F/R/S/I N M

reg_z Elevation of registration point F/R/S/I N M
reg_local_x Local X coordinate of registration pt F/R/S/I N M
reg_local_y Local Y coordinate of registration pt F/R/S/I N M
reg_local_z Local Z coordinate of registration pt F/R/S/I N M

Notes:
Coordinates derived from digitizing equipment can be considered a subset of
local coordinates.
If elevations are not included, columns reg_z and reg_local_z may be null-
filled.

C.2.3.5.6 Diagnostic Point Table

The diagnostic point table includes columns for the longitude (or easting), latitude (or
northing) and elevation of ground points selected as diagnostic points. This table also
includes columns for the corresponding local x, y and z coordinates of diagnostic points.
Each diagnostic point in this table is identified by a row id and a diagnostic point id. The
geographic reference table contains an optional column containing the diagnostic point
table name, which carries the file extension .dpt. (See Table C-48.)

Table C-48 Diagnostic Point Table

Column Name Description of Contents Field
Type

Key
Type

Op/Man

id Row id I P M
diag_pt _id Diagnostic point id I N M
diag_long Longitude (or Easting) of diagnostic

point
F/R/S/I N M

diag_lat Latitude (or Northing) of diagnostic
point

F/R/S/I N M

diag_z Elevation of diagnostic point F/R/S/I N M
diag_local_x Local X coordinate of diagnostic pt F/R/S/I N M
diag_local_y Local Y coordinate of diagnostic pt F/R/S/I N M
diag_local_z Local Z coordinate of diagnostic pt F/R/S/I N M

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 78

Notes:
Coordinates derived from digitizing equipment can be considered a subset of
local coordinates.
If elevations are not included, columns diag_z and diag_local_z may be null-
filled.

C.2.3.6 Database

Information that applies to the whole collection of data belongs at the database level.
Structurally, a database consists of a set of libraries. It is possible to include a data quality
table.

There are two mandatory tables: the library attribute table and the database header table.
These two tables are described below. Multiple records in each table are used to describe
multiple sources, updates, and maintenance issues.

C.2.3.6.1 Library Attribute Table

The library attribute table contains the name and extent for each library in the database.
The library minimum bounding rectangle shall be the maximum and minimum coordinates.
Table C-49 defines library attribute entities. Table C-50 is an example of a library attribute
table.

Table C-49 Library Attribute Table Entity Definitions

Column Name Description Column Type Key Type Op/Man
id Row id I U M
library_name Library name T (L/M/N)1,8 P M
xmin Westernmost Longitude

(or Easting)
F/R N M

ymin Southernmost Latitude
(or Northing)

F/R N M

xmax Easternmost Longitude
(or Easting)

F/R N M

ymax Northernmost Latitude
(or Northing)

F/R N M

Note: 1. Column type for library_name is T. Types L, M, N are maintained for
backward compatibility.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 79

Table C-50 Library Attribute Table Example

id library_name xmin ymin xmax ymax

1 noamer -172.00 31.167000 -57.00 31.250000

C.2.3.6.2 Database Header Table

The database header table (Table C-51) contains information that defines database content
and security information.

Table C-51. Database Header Table Definition

Column Name Description of Contents Column
Type

Key
Type

Op/Man

id Row id I P M
vrf_version VRF version number T,10 N M
database_name Directory name of the database T,8 N M
database_desc Text description of the database T,100 N M
media_standard Media standard used for the database T,20 N M
originator Text for title and address of originator

(a backslash "\" is used as a line
separator)

T,* N M

addressee Text for title and address of addressee
(a backslash "\" is used as a line
separator)

T,* N M

media_volumes Number of media volumes comprising
the database

T,* N M

seq_numbers Sequential number(s) for each media
volume in this database

T,* N M

num_data_sets Number of libraries within database T,* N M
security_class Security classification of database (the

highest security classification of the
information package)
T = TOP SECRET
S = SECRET
C = CONFIDENTIAL
R = RESTRICTED (or alternatively
"FOR OFFICIAL USE ONLY")
U = UNCLASSIFIED

T,1 N M

downgrading Originator's permission for
downgrading required (yes or no)

T,3 N M

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 80

downgrade_date Date of downgrading D N M
releasability Releasability restrictions T,20 N M
other_std_name Free text, note of other standards

compatible with this database
T,50 N O

other_std_date Publication date of other standard D N O
other_std_ver Other standard amendment number T,10 N O
transmittal_id Unique id for this database T,* N M
edition_number Edition number for this database T,10 N M
edition_date Creation date of this database D N M

C.2.3.7 Data Quality

The data quality table may be stored at the database, library, or coverage level. It contains
information on the completeness, consistency, date status, attribute accuracy, positional
accuracy, and other miscellaneous quality information. It also contains information about
the source from which the geographic data was derived. Lineage information should be
included in the associated narrative table, named "lineage.doc." While the contents and
location of a data quality table within a VRF database are product specific, it is highly
recommended that at least one table exist at the library level. Table C-52 defines the
contents of the data quality table. Appendix C5 contains more information about storing
data quality information in VRF.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 81

Table C-52 Data Quality Table Definition

Column Name Description of Contents Column
Type

Key
Type

Op/Man

id Row id I P M
vrf_level Either DATABASE or LIBRARY or

COVERAGE
T,8 N M

vrf_level_name Directory name of database or library
or coverage

T,8 N M

feature_complete Feature completeness percent T,* N M
attrib_complete Attribute completeness percent T,* N M
logical_consist Logical consistency T,* N M
edition_num Edition number T,8 N M
creation_date Date of creation D N M
revision_date Date of revision D N M
spec_name Name of product specification (e.g.

DCW)
T,* N M

spec_date Date of product specification D N M
earliest_source Date of earliest source D N M
latest_source Date of latest source D N M
quant_att_acc Standard deviation of quantitative

attributes
T,* N O

qual_att_acc Percent reliability of qualitative
attributes

T,* N O

collection_spec Name of collection specification T,* N M
source_file_name Name of included source file T,12 N O
abs_horiz_acc Absolute horizontal accuracy of

database or library or coverage
T,* N M

abs_horiz_units Unit of measure for absolute
horizontal accuracy

T,20 N M

abs_vert_acc Absolute vertical accuracy of database
or library or coverage

T,* N M

abs_vert_units Unit of measure for absolute vertical
accuracy

T,20 N M

rel_horiz_acc Point-to-point horizontal accuracy of
database or library or coverage

T,* N M

rel_horiz_units Unit of measure for point-to-point
horizontal accuracy

T,20 N M

rel_vert_acc Point-to-point vertical accuracy of
database or library or coverage

T,* N M

rel_vert_units Unit of measure for point-to-point
vertical accuracy

T,20 N M

comments Miscellaneous comments - free text T/L/M,* N M

Multiple records in each table are used to describe multiple sources, updates, and
maintenance issues.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 82

C.2.3.8 Narrative Table

The narrative table (Table C-53) will contain any descriptive information concerning its
associated table. The contents of the text column will be product specific.

Table C-53 Narrative Table Definition

Column Name Description Column Type Key Type Op/Man
id Row id I P M

text Text information T/L/M/N,* N M

C.2.3.9 Names Reference Coverage

The names reference coverage is optional at the library level. The names reference
coverage must maintain the same bounding rectangle as the other library coverages.

The names reference coverage will contain at least the following: a point feature table; a
node primitive table; and a thematic index created on a fixed-length text column in the
point feature table. The column's name will be "place_name". Other feature classes may
exist, but are not required.

C.2.4 VRF Encapsulation

 Encapsulation defines the structure of data fields and the grouping of these fields. A
simple table-oriented data encapsulation system is defined for VRF which allows the use of
binary coded numeric data as well as text data and which uses references to identify the
location of data elements within numerous related tables stored in files.

C.2.4.1 Table Definition

A VRF table consists of a header and at least one record. See C.2.2.1.3 and C.2.2.2.3.3 for
the exceptions to this rule. Records can be of variable-length; indexes can be used to
directly access the files as needed. A table will begin with a header defining the table
contents, followed by a series of records (rows). Where table records are not of fixed
length, an external index containing record offsets and length (in bytes) will be used to
provide direct access (see Figure C-21).

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 83

Index

Offset Length

 172 34
 206 60
 266 20
 286 20
 306 34
 340 60
 400 10
 410 20
 430 100
 530 34
 564 25
 589 60
 649 20
 669 20
 689 34

Record List
Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Record

Header

Number_bytes,Description,Narrative_file
Field_Name,Type,Length,Key_Type,Desc,Value_Table
Field_Name,Type,Length,Key_Type,Desc,Value_Table
Field_Name,Type,Length,Key_Type,Desc,Value_Table

Entries
 15

Header Length

 171

Figure C-21 Table Structure

C.2.4.1.1 Header

A table header (described in Table C-54) is composed of two parts. The first part is a 4-
byte integer that indicates the length of the following text string, which defines the table.
To accommodate different hardware architecture, after the length field a byte order field
may be inserted. A value of "L" in the byte order field indicates a least-significant-byte-
first encoding; an "M" indicates a most-significant-byte-first encoding. Least-significant-
byte-first encoding is assumed if the byte order field is not present

The second part, the header definition text string, contains three components, each of
which is separated by a semicolon. The semicolon (;) indicates the end of the component.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 84

Table C-54 Header Field Definitions

Field Description Column Type
Header length Length of ASCII header string (i.e., the

remaining information after this field)
I

Byte order Byte order in which table is written:
 L - least-significant-first
 M - most-significant-first

T,1

(semicolon separator) T,1
Table description Text description of the table's contents T,n

(n<=80)
(semicolon separator) T,1

Narrative table An optional narrative file which contains
miscellaneous information about the table

T,n (n<=12)

(semicolon separator) T,1
Column definitions The following fields repeat for each

column contained in the table:
Name Name of the column T,n (n<=16)

(equal sign separator) T,1
Data type One of the field types found in table C-52 T,1

(comma separator) T,1
Number 1 Number of elements T,n (n<=3)

(comma separator) T,1
Key type Key type T,1

(comma separator) T,1
Column description Text description of the column's meaning T,*

(comma separator) T,1
Value description table name Name of an associated value description

table
T,n (n<=12)

(comma separator) T,1
Thematic index Name of thematic indexes. T,n (n<=12)

(comma separator) T,1
Narrative table name Name of an associated narrative table T,n (n<=12)

(comma separator) T,1
End of column (colon separator) T,1

... (repeat for each column)
End of header (semicolon separator) T,1

Note:
1. This field contains the number of occurrences of the data type specified, not

the number of bytes. For example, if there is only one integer value in the
field, the header will contain the number "1" in that field. For text fields only,
the value indicates the maximum of bytes allowed for that column. For
example, if a maximum of 12 characters are allowed in the field, then the
number of elements is specified as "12". The number of bytes specified for
particular text fields are shown in subsequent tables in this specification.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 85

The first component is the table description. The second component is a file reference to a
narrative text, if available. If no narrative file exists, the dash symbol (-) is used for the file
reference. The final component is the column definition substring. The column definitions
are separated by colons (:), which indicate the end of the subcolumn definition. If an entry
is not applicable to the field (i.e., a thematic index does not exist), the dash symbol (-) is
used to indicate a null value. Trailing null field entries need not be included. For clarity in
documentation, these trailing null fields should be listed, however. For each column in the
table, there will be:

a. Column name, followed by an equal sign (=)
b. Data type indicator, followed by a comma (,)
c. Number of data type elements, followed by a comma
d. Key type indicator, followed by a comma
e. Column description, followed by a comma
f. Value description table name, if any, followed by a comma
g. Thematic index name, if any, followed by a comma
h. Column narrative file name, if any, followed by a comma

The character used as a separator for a particular field will not appear in that field except as
a separator. For example, the Table Description header field will never include an
imbedded semi-colon because a semi-colon is the specified separator. However, this field
may legally contain imbedded colons or commas because neither of these characters are the
separator for Table Description.

Table C-55 displays an example of a text header for an area feature table. For presentation
purposes, each component in the table definition string is listed on a separate line in Table
C-56. No new line, space, or tab character should be inserted after the field and component
separators in the actual table definition string. Furthermore, the example does not show the
4-byte definition string length and the byte order character.

Table C-55 shows a header definition string for a Surface Drainage Area area feature table.
A narrative file, sdr.doc, is attached to this table in the VRF database. The table has 12
columns, with the column ID being the primary key column.

Table C-55 Text Header Example
Surface Drainage Area;
sdr.doc;
id=I,1,P,Row ID,-,-,-,:
f_code=T,5,N,FACC Code,char.vdt,f_code.ati,f_code.doc,:
bgl=S,1,N,Bank Gradient Left (%),-,-,-,:
bgr=S,1,N,Bank Gradient Right (%),-,-,-,:
exs=S,1,N,Existence Category,int.vdt,-,-,:
hyc=S,1,N,Hydrological Category,int.vdt ,-,-,:
hfc=S,1,N,Hydrographic Form Category,int.vdt ,-,-,:
mcc=S,1,N,Material Composition Category,int.vdt,-,-,:
nam=T,*,N,Name,char.vdt,-,-,;
wid=S,1,N,Width (meters),-,-,-,:
wda=S,1,N,Water Depth Average (meters),int.vdt ,-,-,:
wva=S,1,N,Water Velocity Average (m/sec),int.vdt,-,-,:;

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 86

C.2.4.1.2 Record List

The body of data contained within the table is the record list; the header and the table index
serve only to define the contents and provide effective access to this list. These records can
be of fixed or variable-length, as needed.

C.2.4.1.3 Variable-length Index File

The variable-length index is a separate file that is mandatory when a VRF table contains
variable-length records (as indicated by a field length "*" or a field type "K"). As shown in
Table C-56, the file has two parts: a header and a data array. Each entry in the data array
relates to a record in the VRF table.

Table C-56 Components of Variable-length Index File

File Component Content of Component Data Type Field Length
Header Number of entries (N) Integer 4 bytes

in index (which also
matches the number of
records in the
associated table)

Number of bytes in Integer 4 bytes
VRF table header

Data array A two-dimensional Integer 8N bytes
array of N records

The data array identifies the location of every record in the variable-length file by
containing the following entries for each record:

[n][0] = Byte offset from beginning of file

[n][1] = Number of bytes in table record

where n is an integer from 1 to N. The term byte offset refers to a location with respect to
the beginning of a file. The first byte of a file has an offset of zero.

Thus, if the software requires the location of record 45 in a VRF table, the index file can be
used to locate the exact position of the record without sequentially searching for the match.
The entry for record 45 in the variable-length index would indicate the byte offset in the
VRF table to the position of record 45 and the number of bytes in record 45.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 87

C.2.4.2 Spatial Index Files

For each primitive (fac, edg, cnd, end, nod, and txt), there can exist a spatial index file that
will accelerate queries by software. Although these files are optional, they are
recommended, especially for large libraries. These indexes are indirectly created on the
coordinate column or the minimum bounding rectangle of each primitive; Appendix C6
contains more information.

The format of the spatial index is as follows:

a. Header record. The header will contain one integer defining the number of
primitives (NUMPRIM) and another integer defining the number of nodes
(NNODE) in the index. Between the two integer fields are four (xmin, ymin,
xmax, ymax) short floating point coordinates defining the minimum bounding
rectangle. Table C-57 shows the layout for the spatial index file header
record.

Table C-57 Spatial Index File Header Record Layout

Byte Offset Width Type Description
0 4 Integer Number of

primitives
4 4 Floating point MBR x1
8 4 Floating point MBR y1
12 4 Floating point MBR x2
16 4 Floating point MBR y2
20 4 Integer Number of

nodes in tree

b. Bin array record. This record is a two-dimensional array the length of which
is NNODE, described in the header record. The structure of this record is
shown in Table C-58. This array maintains a long integer offset that points to
the beginning of the bin data record and a long integer primitive count for
each bin. The offset for the first bin always has a value of zero. For bins that
contain no primitives, the value assigned to the count variable is zero and the
offset value is zero.

Table C-58 Structure of the Bin Array Record

Byte Offset Width Type Description
HDR + 8*n 4 Integer Offset of primitive list for

node n
HDR + 8*n + 4 4 Integer Count in integer units

Note: n is {0 ... number of nodes-1}; the n value for the first node is 0. HDR is the
length of the index file header record.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 88

c. Bin data record. There are NUMPRIM records where each record contains
four 1-byte integers defining the mbr for the primitive and one long integer (4
bytes) for the primitive id. These primitive ids point into the associated
primitive table. Table C-59 shows the structure of the bin data record.

Table C-59 Structure of the Bin Data Record

Byte Offset Width Type Description
HDR + BIN + OS + 8*c + 0 1 byte MBR x1
HDR + BIN + OS + 8*c + 1 1 byte MBR y1
HDR + BIN + OS + 8*c + 2 1 byte MBR x2
HDR + BIN + OS + 8*c + 3 1 byte MBR y2
HDR + BIN + OS + 8*c + 4 4 integer Primitive id

Note: c is {0 ... number of primitives for a node - 1}; the c value for the first
primitive is 0. HDR is the length of the index file header record. BIN is the
summed length of all the bin array records. OS is the value of the offset variable in
the corresponding bin array record (as shown in the byte offset calculation in Table
C-58).

C.2.4.3 Thematic Index Files

A thematic index may be created for any column in a table. There are two types of
indexes, depending on the data content in a column: an inverted list thematic index or a bit
array thematic index.

For categorical data or data with few distinct values, such as soil features where numerous
faces are assigned soil class designations from a relatively small number of classes, an
inverted list is used. One entry in the index file is created for each distinct value in the
column; correspondingly, a list of table record ids is stored with the value.

If the data in a column is all unique, especially in the case of an index for character strings,
a bit array can be stored for each unique byte/character in the column. Each bit in the bit
array represents a row in the indexed table. An ‘ON’ bit at a particular position means that
the corresponding row in the table contains a specific byte/character pattern.

The character string form of the thematic index is used for names placement index
implementations.

The thematic index file may be partitioned into three data groups: a fixed-length header, a
variable number of index (or directory) entries (another index within an index), and a set of
rows. Each row contains VRF record ids stored either as a list or as a bit array.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 89

Each directory entry describes the element being indexed and the location of the row
containing the list (or set) of record ids related to the element.

a. Header. The thematic index header contains 60 bytes of information that
pertain to the type of index it is, the table it is associated with, and the column
in that table. The layout of the header record is shown in Table C-60. An
optional ordering of the entries in the index directory can be specified using
the ordering flag at offset 56 in the index header. An "S" in the ordering flag
indicates an ascending sort order in the index directory. Entries in the
directory are assumed not to have any specific ordering otherwise.

b. Index directory. The index directory contains repeating records for each
distinct element being indexed. The structure of an index directory record is
shown in Table C-61. The number of entries is stored in the header record.
Entries in the index directory give an offset at which the actual data are
stored. There is also a count indicating the number of items maintained for a
particular index value. If the count field in an index directory entry has a
value of zero, the offset field contains the actual data; otherwise, the offset
field contains an indirect address for the indexed data.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 90

Table C-60 Thematic Index file Header Record Layout

Byte Offset Width Type Description
0 4 Integer Combined length of the index file header

and the index directory.
4 4 Integer Number of directory entries. This is the

number of items being indexed by a particular
index file.

8 4 Integer Number of rows in the data table from which
this index file was derived.

12 1 Character Type of index file; either "I" for inverted list
index, or "B" for bit array index.

13 1 Character Type of the data element being indexed; one of:
I" - 4-byte integer
"T" - character string
"S" - 2-byte integer
"F" - 4-byte floating point
"R" - 8-byte floating point

14 4 Integer Number of data elements comprising one
directory entry. This field will usually have a
value of 1; an exception is a thematic index
built on a text field.

18 1 Character Type specifier for the data portion of an index
file. Record ids in inverted list index can be
stored by using either a 2-byte integer (type "S")
or a 4-byte one (type "I"). Bit array index files
always use type "S."

19 12 Character The name of the VRF table from which the
index file has been derived; no path information
is included.

31 25 Character The name of the column in the VRF table
from which index entries have been pulled.

56 1 Character Ordering flag ("S" indicates an ascending
order in the index directory; no specific sort
order otherwise).

57 3 Character Unused and reserved.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 91

Table C-61 Structure of Index Directory Record

Byte Offset Width Type Description
HDR +n*(d+8) d Character string

2-byte integer
4-byte integer
4-byte floating point
8-byte floating point

The element being indexed.

HDR +n*(d+8)+d 4 Integer The offset from the beginning of
the file to the location of the row
associated with this index entry.

HDR +n*(d+8)+d+4 4 Integer The number of indexed records
associated with this entry. (For
bit array index files, this is the
number of bytes.)

Note: n is {0 ... number of index entries-1}, and d = size of (indexed type). HDR is the
length of the index file header record.

c. Index data. For each index entry there exists a data record consisting of either
a list of row ids from the indexed file or a bit array.

The following example shows an inverted list thematic index created on a feature table
column of data type 'S' (short integer). The name of the column is use_code. The name of
the table is cularea.aft. The index table header shown in Table C-62 is thus,

Table C-62 Thematic Index Header Example

Byte Offset Width Type Value
0 4 Integer 90 (header length + index directory length)
4 4 Integer 3 (number of directory entries)
8 4 Integer 293 (number of indexed rows)
12 1 Character I (inverted list)
13 1 Character S (short integer source data)
14 4 Integer 1 (data length is 1)
18 1 Character S (short integer indexed id)
19 12 Character cularea.aft.
31 25 Character use_code
56 1 Character S (sorted index directory)
57 3 Character " "

The value at byte offset 60 is the value of the element being indexed. The number of rows
from the table cularea.aft is contained at address HDR+n*(d+8)+d+4 (in this case at byte
offset 66). The first entry in the directory has a use_code value of 2, and there are 5 rows

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 92

that contain the value. The cularea.aft rows can be found at address 90. Another index
directory entry starts at offset 70. This entry has a count of zero, indicating that the offset
field contains the row number for the cularea.aft table. The index directory shown in Table
C-63 is thus,

Table C-63 Thematic Index Directory Example

Byte Offset Width Type Value
60 2 Short Integer 2 (index value)
62 4 Integer 90 (offset)
66 4 Integer 5 (count)
70 2 Short Integer 3
72 4 Integer 20 (direct row id)
76 4 Integer 0 (count of "zero")
80 2 Short Integer 4
82 4 Integer 100
86 4 Integer 4

The index data shown in Table C-64 are thus,

Table C-64 Thematic Index Data Example

Byte Offset Count Row numbers
90 5 8 9 10 11 12
100 4 22 23 24 25

C.2.4.3.1 Feature Index

Feature indices may be created for any VRF coverage. These are join indices that have
been developed to enhance processing of complex queries in relational databases. This is
particularly significant in tiled VRF coverages with a number of feature classes. The
DIGEST VRF Standard specifies a set of join indices for feature/primitive joins. One
feature join index can be defined for each of the five primitive types in a coverage. For
example, an edge feature join index, edg.fit, can be defined for edge primitives and the
corresponding line and complex features that reference those primitives.

Feature join indices are optional. Feature indices are composed of: (a) a feature class
attribute table (fca) and (b) a number of feature index tables (fit). Feature index tables
allow quick retrieval of feature information when given a selected primitive.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 93

They bypass the normal relational operations usually required and restore the results of
feature-to-primitive and primitive-to-feature relations. As indices, they may be deleted at
any time and the relationships between tables will be maintained provided the associated
join tables have been defined. Any updates to the data will cause the indices to be rebuilt.
The feature index tables may not be referenced in the fcs. There could be one fit for each
primitive type in a coverage. For a given coverage, if a feature index is defined for a
primitive type, all feature classes associated with that primitive type must be indexed. All
fca and fit's reside at the coverage level.

A VRF coverage can optionally contain a Feature Class Attribute table (fca). This table
should minimally have the following columns: a feature class id column (id), a feature
class name column (fclass), the feature type (type) and a feature class description column
(descr). A feature class attribute table definition example is shown in Table C-65.

Table C-65 Feature Class Attribute Table Definition

Column Name Description Field Type Key Type Op/Man
id Row id I P M
fclass Feature class name T,8 U M
type Feature type (P-point, L-

line, A-area, T-text, C-
complex)

T,1 N M

descr Description T/L/M/N,* N M

Every primitive/feature reference, both directly and indirectly, as in the case of complex
features, results in one entry in the appropriate fit for that primitive and the corresponding
feature. If a feature is composed of multiple primitives, each of those feature/primitive
relationships is recorded. Conversely, if a primitive is applicable for more than one
feature, multiple relationships are similarly maintained. When a primitive is referenced by
a complex feature via an intermediate feature, the relationship between the primitive and
the complex feature, as well as that between the primitive and the intermediate feature, are
recorded in the fit's.

Feature Index Tables (fit) are made up of two compound keys, the feature class id (fc_id)
and the feature id (feature_id) to properly identify an individual geographic feature, and the
tile id (tile_id) and primitive id (prim_id) for a primitive. Available fit names are: edg.fit,
nod.fit, end.fit, cnd.fit, fac.fit and txt.fit. An example of a feature index table definition is
shown in Table C-66.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 94

Table C-66 Feature Index Table Definition

Column Name Description Field Type Key Type Op/Man
id Row id I P M

prim_id Primitive id (foreign key
to primitive table)

I N M

tile_id Tile reference id S N MT
fc_id Feature class id (foreign

key to fca)
I N M

feature_id Feature id (foreign key
to feature table)

I N M

C.2.4.4 Allowable Field Types

The field types depicted in Table C-67 are allowed and provide the ability to encode any
data set. All variable-length types include a count item "n" (as depicted in Table C-67)
preceding the data. The count is a 4-byte integer. This count item contains the number of
bytes in text strings and the number of tuples in coordinate strings.

Table C-67 Allowable Field Types

Abbr
v

Column Type Null/No Value Length
(bytes)

T,n Fixed-length text "N/A" n
T,* Variable-length text Zero length n + 4
L,n Level 1 (Latin 1 - ISO 8859) Fixed-length text “N/A” n
L,* Level 1 (Latin 1 - ISO 8859) Variable-length

text
zero length n+4

N,n Level 2 (obsolete retained for compatibility) “N/A” n
N,* Level 2 ((obsolete retained for compatibility) zero length n+4
M,n Level 3 (Multilingual - ISO 10646) Fixed-

length text
“N/A” n

M,* Level 3 (Multilingual - ISO 10646) Variable-
length text

zero length n+4

F Short floating point NaN (not a number) 4
R Long floating point NaN (not a number) 8
S Short integer bit pattern 10000000 00000000 2
I Long integer bit pattern 10000000 00000000

00000000 00000000
4

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 95

C,n 2-coordinate array,
short floating point

Both coordinates equal to null 8n

C,* 2-coordinate string Length = 0 8n + 4
B,n 2-coordinate array,

long floating point
Both coordinates equal to null 16n

B,* 2-coordinate string Length = 0 16n + 4
Z,n 3-coordinate array,

short floating point
All three coordinates equal to
null

12n

Z,* 3-coordinate string Length = 0 12n + 4
Y,n 3-coordinate array,

long floating point
All three coordinates equal to
null

24n

Y,* 3-coordinate string Length = 0 24n + 4
D Date and time Space character filled 20
X Null field - -
K Triplet id Type byte = 0 1–13

G,n 2-coordinate array - short integer Both coordinates equal to null 4n
G,* 2-coordinate string - short integer Length = 0 4n + 4
H,n 2-coordinate array - long integer Both coordinates equal to null 8n
H,* 2-coordinate string - long integer Length = 0 8n + 4
V,n 3-coordinate array - short integer All three coordinates equal to

null
6n

V,* 3-coordinate string - short integer Length = 0 6n + 4
W,n 3-coordinate array - long integer All three coordinates equal to

null
12n

W,* 3-coordinate string - long integer Length = 0 12n + 4

Note: For data types Y,Z,V and W, if the elevation (Z) field is not populated due to source
restrictions, it will be filled with the appropriate NULL value.

C.2.4.5 Naming Conventions

The following define the naming conventions for VRF file and column names. (See also
the VRF reserved names in tables C-14, C-15, and C-16.)

a. All naming will use ISO 646 (ASCII) characters.

b. All file names and all references to file names shall be lowercase. This
includes file references within table headers, attribute values, and indices. All
references to database, library, coverage, and feature class names shall be in
lowercase where they occur. For example, feature class names in fcs and fca
tables will be lowercase. For file names, the first character must be an alpha
character from a to z. The remaining 7 characters can be alphanumeric,
including the underscore ('_') character.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 96

A file name may have a trailing period with a 3-character suffix. The suffix may contain
only characters from a to z, except that x is reserved for variable-length indexes.

Any table with variable-length records will maintain a variable-length index file with the
same file name as its associated table except that the last character will be x (with one
exception; see paragraph C.2.3.1.2).

c. All names are to be in lowercase.

d. Directory names (names for libraries, databases, and coverages) are restricted
to the same rules as for file names, except that there will be no suffix.

e. Column names follow the same restrictions as file names, but they can be 16
characters in length. The dollar sign ('$'), number sign (also known as gate,
hash, pillow, pound and octothorpe) ('#'), dash ('-'), period ('.'), and slash ('/')
are allowable characters.

The column name ("id") is reserved and must be used to identify each table record.

f. If a column is defined with a triplet id, the fields within the triplet id will be
named as:

Field one id The internal tile primitive id
Field two tile_id The tile reference id
Field three ext_id The external tile primitive id

The (\) will be used as a separator between the column name and the triplet id field. Thus,
when referring to the internal primitive id within a triplet id column (left_face) the column
name will be named "left_face\id".

C.2.4.6 Triplet id Field Type

As discussed in cross-tile keys (clause C.2.2.2.3.4), a triplet id can be used to reference
primitives from multiple tiles in a tiled coverage. This field type replaces the integer
foreign key used in untiled coverages. The first component of a triplet is an 8-bit type byte.
The type byte is broken down into four 2-bit pieces; each of these 2-bit pieces describes the
length of a succeeding field. Table C-68 lists the possible values for these 2-bit field
descriptors. Only the first three fields are currently being used. The fourth field is
reserved. Figure C-22 is an example of the triplet id field.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 97

Table C-68 Type Byte Definitions

Bit Count Number Bits in Field

0 0
1 8
2 16
3 32

1000

3000

0230

3230

Type
Byte

Resulting
id

8-bit row id

32-bit row id

16-bit tile id

32-bit row id

32-bit row id (current tile)

16-bit tile id

32-bit row id (next tile)

Figure C-22 Examples of the Triplet id

The first field (referred to as id) generally is used to store a primitive id without a tile id
predicate. The tile reference id, the second field (tile_id), and the external primitive id, the
third field (ext_id), together store an augmented primitive id for cross-tile topology.

C.2.5 Data Syntax Requirements

VRF requires the use of numeric, textual, coordinate, and date syntax items. These items
comprise the lowest level of the VRF design. In order to utilize these items, a number of
basic data types are required. These are integer or real numbers, strings of text, and
coordinate data types. The coding of these data types is defined in terms of a number of
international standards. VRF products may have a byte order specified in the product
specification and the table header. Five categories of data syntax items are required in
VRF. These are integer numbers, real numbers, text strings, coordinates, and date.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 98

C.2.5.1 Integer Numbers

The two fixed-length integer data fields are 16 bits and 32 bits; hereafter they are termed
"short" and "long" precision, respectively. Integers are binary encoded using the 2's
complement scheme. For integer number formats, the null value consists of the sign bit set
to one and all trailing bits set to zero. See Part 3 Clause 5.1.

Different length integer numbers may be required in different situations. For example, the
number 32,000 can be handled in 2 bytes of data, whereas the number 2,147,483,647 will
fill 4 bytes of data. The general structure and several examples of the integer number
format can be found in Figure C-23.

5140 = 0 0 0 0 0 01 1 0 0 0 0 0 01 1

1 1 1 1 0 11 0-7 =

0 0 0 1 0 01012 =
b1b2b3b4b5b6b7b8

b1b2b3b4b5b6b7b8

b1b2b3b4b5b6b7b8 b1b2b3b4b5b6b7b8

b1b2b3b4b5b6b7b8

• • •

 Integer Number Format Structure

b1b2b3b4b5b6b7b8

Integer Examples

bits
byte

LSB = Least
Significant
Bit

MSB = Most
Significant
Bit

Figure C-23 VRF Integer Number Syntax

C.2.5.2 Real Numbers

Real numbers are needed to carry parametric information. VRF uses the IEEE floating-
point real number format (ANSI/IEEE 754) in both 32-bit (short) and 64-bit (long) form.
See Part 3 Clause 5.1.

Numbers in the single and double formats are composed of the following three fields:

s 1-bit field for sign
e Biased exponent field (equals exponent E plus bias)
f Fraction field (mantissa)

a. Range. The range of the unbiased exponent includes every integer value
between Emin and Emax, inclusive, and also two other reserved values, Emin -
 1 and Emax + 1, to encode certain special states as described below.
Figure C-24 illustrates real number syntax.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 99

b. 32-bit format. For a 32-bit single format number, the value v is inferred from
its constituents thus:

(1) If e = 255 and f is non-zero, then v is NaN,
(2) If e = 255 and f = 0, then v = (-1)s infinity,
(3) If 0 < e < 255, then v = (-1)s 2e -127 (1.f),
(4) If e = 0 and f is non-zero, then v = (-1)s 2e-127 (0.f)

(denormalized numbers),
(5) If e = 0 and f = 0, then v = (-1)s 0 (zero).

c. 64-bit format. For a 64-bit double format number the value v is inferred from
its constituents, thus:

(1) If e = 2047 and f is non-zero, then v is NaN,
(2) If e = 2047 and f = 0, then v = (-1)s infinity,
(3) If 0 < e < 2047, then v = (-1)s 2e -1023 (1.f),
(4) If e = 0 and f is non-zero, then v = (-1)s 2e-1023 (0.f)

(denormalized numbers),
(5) If e = 0 and f = 0, then v = (-1)s 0 (zero).

Note: The "." in equations (3) and (4) above corresponds to a decimal point.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 100

• The sign bit is 0 for positive and 1 for negative.

• The exponent is 8 bits long for short real numbers and
 11 bits for long real numbers. The exponent is biased by
 81 hexadecimal for short real numbers and 401 for long.

• The remaining bits are the mantissa. Since the first
 significant bit is known to be set (since the mantissa
 is normalized), it is not stored. The length is 23 bits
 for short real numbers and 52 bits for long real numbers.

Where :

IEEE Long Real Number Format Structure (64 bit)

IEEE Short Real Number Format Structure (32 bit)

Sign

Exponent

b31b32 b23

Mantissa

• • •

b1

s e f

1 8 23

Implicit
Binary
Point

Sign

Exponent

b63b64 b52

Mantissa

Implicit
Binary
Point

b1

s e f

1 11 52

• • • • • •

Figure C-24 Real Number Syntax

C.2.5.3 Date and Time Syntax

The generalized time data type consists of a string of international reference version (IRV)
characters where the calendar date is specified in ISO 8601. See Part 3 Clause 5.1.4 to
5.2.3.

The coding of generalized time data in accordance with ISO 8601 in VRF consists of a
four-digit representation of the year, a two-digit representation of the month, and a two-
digit representation of the day. This is followed by the time of day (as specified in ISO
8601) consisting of a string of digits containing a two-digit representation of the hour
(based on the 24-hour clock), a two-digit representation of the minute, and a two-digit
representation of the second, followed by a decimal point (or decimal comma) and an
arbitrary number of digits of fractions of a second. This may be followed by the letter Z to
represent coordinated Universal Time rather than local time, or be followed by a time
differential from UT in accordance with ISO 8601 (see Figure C-25). In a fixed data field
usage, date and time elements will be 20 bytes long, allowing for the specification of date
and time with time zone differentials (or optionally fractional seconds). Unfilled digits
will be filled with space characters. A null date time specification will consist of a string
of space characters.

DIGEST Part 2
Edition 2.1, September 2000

Annex C - Vector Relational Format

C - 101

Year Month Day Hour Min. Sec. Decimal
point
or
comma

Time Zone
Differential

Z for Universal Time
+ or - for Time Zone
Differential

Optional

Hour Min.
+
-
z

 Example Date / Time Elements

" "

1992

199210

19870205160627.

19870205210627.Z

19870205160627.-0500

• No date/time given, 20 space characters

• Year is only value given, no time. Pad
with space characters.

• Year/month given, no time. Pad with space
characters

• Local time 6 minutes, 27 seconds after 4
pm on 5 February 1987

• As above but Universal Time (Greenwich)

• Local Time as above. The local time is 5
hour time behind UTC

Figure C-25 Date and Time Syntax

C.2.5.4 Text Syntax

Textual information can be either variable-length or fixed length. The null state of a
variable-length text string is of zero length. The null state of a fixed-length text string
requires that a specific code be selected. The character string "N/A" should be used,
padded if necessary. If the length is one or two, "-" or "--" should be used instead. The
character space (code table position 2/0) should be used as the "space" or "blank" character,
and as the padding character. The character code NUL C0 control set (code table position
0/0) and a number of other CO control characters may have special meaning on some
computer systems and should not appear in any text strings. A NUL or a SUB (^Z) in a file
is an end of file mark on some computers.

Two types of text strings are supported in VRF:

1. Basic text string. These strings make use of characters only from the
IRV (ASCII) primary code table and the subset of the CO table identified
above.

2. General text strings. These strings are composed of characters from the
ISO 8859-1 Latin Alphabet 1 or the ISO 10646 (Unicode) repertoire.

The text representation and coding is described in DIGEST Part 3 clauses 5.1.4 to 5.2.3.

DIGEST Part 2
Edition 2.1, September 2000
Annex C - Vector Relational Format

C - 102

C.2.5.5 Coordinate Syntax

A coordinate specifies a position in the Cartesian unit coordinate space as a vectorial
displacement from the origin of the coordinate space. A coordinate parameter value takes
the form of a short or long floating point value or as a short or long integer displacement
from a local origin.

C.2.5.6 Coordinate Strings

Two types of coordinate strings are defined for use in VRF. These consist of coordinate
tuples (pairs or triplets). All coordinate strings are constructed out of the number and
coordinate formats defined in the previous subclauses. A coordinate string consists of a
sequence of coordinate parameter values corresponding to coordinate tuples.

C.3 Notes

(This clause contains information of a general or explanatory nature that may be helpful,
but is not mandatory.)

C.3.1 Intended Use

This standard is designed to define the methods and provide guidance for creating and
using digital geographic databases in Vector Relational Format.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 1 — VRF Data Model

C1 - 1

Appendix C1 - Introduction to the VRF Data Model

C1.1 GENERAL

This appendix provides information, discussion, and examples concerning the VRF data
model.

C1.2 APPLICABLE DOCUMENTS

This clause is not applicable to this appendix.

C1.3 DEFINITIONS

For purposes of this appendix, the definitions in Part 2 clause 4.1 of the main document
shall apply.

C1.4 GENERAL INFORMATION

C1.4.1 Introduction

VRF is a general, user-oriented data format for representing large spatially referenced
(geographic) databases. VRF is designed to be used directly; that is, software can access
the data without time-consuming conversion processing. VRF is designed to be
compatible with a wide variety of users, applications, and products.

To achieve its generality and user orientation, VRF uses a georelational data model that
provides a flexible but powerful organizational structure for any digital geographic
database in vector format. VRF defines the format of data objects, and the georelational
data model supporting VRF provides a data organization within which software can
manipulate the VRF data objects.

The following paragraphs discuss in general the data model that serves as the basis of
VRF. Clause C1.4.2 discusses the basic concepts that form the foundation for all
geographic data models. Clause C1.4.3 describes the relational model, while clause C1.4.4
describes the planar topology model.

C1.4.2 Data Model Concepts
A model is a fundamental description of a system that accounts for all known properties of
that system. The system is a view of geographic reality, or information tied to specific
locations in coordinate space. Since this particular model is stored in a computer, it is
called a data model. A data model provides the most abstract representation of a system; it
describes a collection of entities, including their relationships and semantics. The purpose
of a data model is to define and capture a view of reality in a consistent and uniform
manner. It provides a framework to visualize the structure and behavior of these entities in
a system.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 1 - VRF Data Model

C1 - 2

A model of a database requires three components: the definition of the data objects, data
operations, and the rules of data integrity. These components are defined in the following
three subparagraphs. Objects identify how the user perceives the data and its structure.
The operations define how the user may manipulate the objects. Integrity rules bind the
objects and operations, and establish a well-defined behavior that provides accurate
information in a predictable manner. The fourth sub-paragraph deals with the purpose and
functionality behind a database.

C1.4.2.1 Data Objects

Data objects identify how the user perceives the data and its structure. These objects also
define the most primitive partitions of the data model architecture. For instance, an
international database may contain a wide variety of objects concerning nations. The
relevant objects could be areas, civil divisions, populations, resources, products, and water
bodies. Relationships can be defined for these objects where populations and resources are
grouped by civil divisions.

C1.4.2.2 Data Operations

Data operations define how a user may manipulate the objects; where, for instance, an
object's attributes may be displayed, or new attributes could be defined, or, perhaps, new
objects created. In most cases, an algebra is defined that accurately manipulates the data
objects and binds the scope of operations within the data model. Classical database
operations include retrieval, creation, deletion, and modification. More specific operations
are defined for applications using the database.

C1.4.2.3 Data Rules

The rules of data integrity constrain the operations on objects in order to preserve overall
stability. The goal is to prevent operations that yield corrupt, incorrect, or ambiguous
results. Integrity rules constrain the set of valid states of databases that conform to the data
model. These rules define the accuracy of the database.

C1.4.2.4 Database Purpose

One function of a database is to provide centralized control of operational data that is vital
to an organization. A data model attempts to closely mesh the data objects, operations, and
integrity rules into a cohesive system with optimal performance. The advantages of
centralized database control are well established, and the use of a data model allows a
database to provide the following functionality to an organization:

a. Consistency. The database will provide access to data in a formal manner.
This will establish a consistent view of the data, enabling efficient data
exchange.

b. Simplicity. A basic objective is to provide an intuitive, straightforward,
and understandable interaction between the user and the data.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 1 — VRF Data Model

C1 - 3

c. Non-redundancy. Duplication of data will be avoided wherever possible,
especially when repetition provides little additional information.

d. Multiple applications. The data model needs to support multiple end-user
applications because user views of the database will be different.

e. Flexibility. A critical requirement of an effective database is the ability to
accept new data. A database needs to have the dynamic flexibility to grow
with the needs and requirements of its users.

f. Integrity. The integrity rules should be defined in a consistent manner for
all data objects and operations. The use of well-defined rules prevents
operations that lead to data corruption and misinformation.

In summary, a data model provides a powerful approach to achieving optimum centralized
control of critical data within a system. Using a variety of integrity rules and established
operations upon defined data objects, the database provides users with the necessary tools
for extracting data in support of many applications.

C1.4.3 Relational Data Model Concepts

The relational data model provides a powerful architecture for database design because of
its ability to handle a wide variety of data and applications.

C1.4.3.1 Relational Data Objects

The relational model uses simple tabular data structures to portray the data in a natural,
well-defined manner. These data structures contain columns and rows, where columns
define attributes, the values for which are taken from a range of data defined across a given
domain. The content of the rows represents the actual data entities. The strength of the
relational model is its ad hoc ability to establish meaningful data, transforming data into
information as a function of user perspective. For instance, a relational table "roads" can
be defined as having three columns: name, class, and structure. The rows that compose
the roads table would contain distinct information about each road in each field in the
database. The six following properties distinguish relational tables from nonrelational data
objects:

a. Entries in columns must be single-valued; a field may not contain a list of
attributes.

b. Entries within a column must be of the same data type.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 1 - VRF Data Model

C1 - 4

c. Each row must be unique, and duplicate rows are not permitted.

d. Columns may appear in any order.

e. Rows may also appear in any order.

f. Each column must have a unique name.

C1.4.3.2 Relational Data Operations

The relational model supports eight set operations: select, project, product, join, union,
intersection, difference, and division. Since the relational model is founded on set theory,
the operations themselves are based on fundamental mathematical principles. These
operations allow data objects to be manipulated and created in a specific manner,
producing stable results.

C1.4.3.3 Relational Data Rules

The integrity rules constrain operations performed on objects in order to preserve stability.
The goal is to prevent operations that yield corrupt, incorrect, or ambiguous results. The
entity integrity rule requires the entry of a null value in columns in relational tables for
which the value is always known or understood. The referential integrity rule ensures that
a foreign key referenced into another table stays within recognizable bounds. For example,
a foreign key is not permitted that references a record number of 500 in a table that only
contains 300 records. Additional, more subtle domain rules can also be defined to
constrain entries in and operations on the database.

C1.4.4 Plane Topology Model Concepts

Conceptually, plane topology can be defined as a planar graph, where geographic reality is
decomposed into a finite set of 0 cells (nodes), 1 cells (edges), and 2 cells (faces). This
terminology is defined by an algebraic topology that establishes rules for decomposing
continuous three-dimensional objects into representations of finite models. Once this
topological mapping has been performed, a system can be modeled in a way that permits
more complex relationships between objects to be established.

The purpose of topology is to capture and retain knowledge concerning a cell's spatial and
thematic relationships with its neighboring cells. For a topological model to be valid, these
relationships must remain constant regardless of changes in scale, shape, or size. With
topology embedded in a data model, very useful relations can be established, such as
adjacency and connectivity. Topological and geometric relationships (such as size, angle,
and shape) provide powerful resources that allow geographic reality to be fully modeled.

C1.4.4.1 Topological Objects

Plane topology extends graphic models of nodes and edges to the development of a more
powerful and expressive model that contains spatial relationships. In addition to metric
capabilities (distance, shape, or size), topology determines spatial neighbor relations.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 1 — VRF Data Model

C1 - 5

By defining more rigorous and complex relationships in the data model, the true properties
of a system can be more effectively represented. Various mathematical models are
available. In addition, simpler models can be used to create more complex ones. The most
simple is the graphic model. More complex and useful surface-based models are built
upon the graphic, using topology to capture additional analytical information.

A graphic model represents geometric information based on node and edge primitives.
This model provides the base for other models that define more complex relationships.
The node primitive is composed of a location in an established coordinate space. Most
representations are two dimensional such as (x,y) or three dimensional such as (x,y,z). An
edge is composed of a minimum of two nodes, with more details concerning linear or
spline interpolation between the end points.

Because of the complexity of geographic information and the limitations of a graphic
model, plane topology provides a better model for defining relationships. The use of a
planar topology model (based on the two-dimensional manifold), for instance, maps more
concisely in the two-dimensional space that current computing systems can manage. VRF
provides four distinct levels of topology: full planar topology (level 3); a linear planar
graph (level 2); a nonplanar linear graph (level 1); and no topology defined, indicating a
geometric model (level 0). VRF uses the notion of topology as a constraint to enforce
integrity rules upon the feature definitions. As the entities require fewer topological
relationships, the rules can be relaxed. For instance, if linear features in a transportation
network are being modeled, then the requirement of full planar topology may be relaxed
because it is not necessary.

Plane topology defines relations between cells without modifying the underlying geometry.
The concept of a cell can be visually retained in graphic models, but only allows one view
of the data. Topology establishes a framework that provides more information for
analysis. For instance, in figure C1-1, the edges 1, 2, 3, 4, and 5 are grouped together into
face 'a.' Another face known as 'b,' including the edges 5 through 12, can be defined.
Topology defines relationships on each 0-, 1-, and 2-cell in a model. Face 'b' is defined to
be "left-of" edge 5; edge 7 can be defined to follow edge 6 in a cycle. This topological
information provides the power to determine orientation, adjacency, and connective
relationships between objects.

b a
1

2

34

5

67
8

10
11 12

13c

9

Figure C1-1 The Definition of Faces

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 1 - VRF Data Model

C1 - 6

The concept of topology held by the geometric primitives is carried upward to features and
their associated thematic information. An area feature is usually labeled, or contains
information pertaining to the enclosed region. For instance, an area can have a category
(soil class, surface material type) or a numeric value (population size, number of airports).
Topology is used to provide operations and information to distinguish between these
thematic objects. Thematic relationships can exist between features without requiring the
primitive geometry. For instance, a set of the islands in the Pacific Ocean (Oahu, Maui,
Hawaii, Molokai, etc.) can be defined as different features with differing geometric
primitives, but they can be related to one another as the Hawaiian Islands by means of a
complex feature.

C1.4.4.2 Topological Operations

Topological operations are based on the single notion of adjacency—that is, if two objects
are next to each other, it is necessary to maintain the adjacent relationship between them.
To distinguish the topological aspects from the geometric aspects of geography, we are
only concerned with whether two objects, A and B, are adjacent to each other and not with
whether A is bigger than B, or one is to the north of the other, or the length of their
common boundary.

Many complex topological operations can be derived from adjacency alone. In the
georelational data model implemented for VRF, two topological operations are paramount:
boundary and coboundary. For example, an edge has a start node and an end node; the
nodes are the boundary for the edge. The edge, in turn, is the coboundary of the node. Of
course, the coboundary of a node can have more than one edge if many edges meet at a
node. Similarly, faces have edges as boundaries. The coboundaries of edges are
maintained in the left and right faces.

C1.4.4.3 Topological Rules

The integrity rules of the topological model are contained in the definition of the objects
themselves. A plane model restricts itself to planar geometry, where all entities must lie
in the same plane. In addition, all faces must be mutually exclusive and non-overlapping.
These constraints allow the objects to be defined in context and allow operations to be
performed in a consistent manner. While these rules may seem to restrict the system
model, they define the data model's domain, taking advantage of the underlying structures.
By restricting the faces to be constructed of non-overlapping regions, powerful set
operations can be applied to the objects (such as union, intersection, or join).

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 1 — VRF Data Model

C1 - 7

C1.4.4.4 The VRF Georelational Data Model

VRF uses a combination of the relational and the planar topological data models to provide
a hybrid model for geographic data management, analysis, modeling, and display. The
georelational model provides the data structure foundations for a spatial database, and
software provides the rules and operators that manipulate topology, geometry, and
relational objects in the form of tables. Whenever an operation requires thematic
information, the use of relational and topological table operations are used to supply the
result. If the operation is spatially related, geometry and topology together will be used.
This triad of categories (geometry, topology, and relational tables) provides a robust
database architecture.

VRF adheres to the georelational data model, but only defines the objects and the data
structures that compose the objects. The georelational operations and algebra are not part
of the standard, but rather are implemented in software. Every VRF object is described in
the form of a relational table, composed of columns defining the syntax of each field and
rows that contain the actual data.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 1 - VRF Data Model

C1 - 8

[This page intentionally left blank]

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 2 - Winged-Edge Topology

C2 - 1

Appendix C2 - Winged-Edge Topology

C2.1 GENERAL

This appendix provides information, discussion, and examples concerning winged-edge
topology.

C2.2 APPLICABLE DOCUMENTS

This clause is not applicable to this appendix.

C2.3 DEFINITIONS

For purposes of this appendix, the definitions of Part 2 clause 4.1 of the main document
shall apply.

C2.4 GENERAL INFORMATION

C2.4.1 Winged-Edge Topology

Winged-edge topology is an essential part of the VRF data model. The function of
winged-edge topology is to provide line network and face topology and also to maintain
seamless coverages across a physical partition of tiles. The following clauses define the
components of winged-edge topology, the algorithm used to traverse the winged-edge
network, and cross-tile topology.

C2.4.2 Components of a Winged Edge

Winged-edge topology uses three specific components (columns) on an edge primitive
table to provide connectivity between nodes, edges, and faces. Given level 1, 2, or 3
topology, the edge primitive will contain specific columns for each topological level. As
shown by Figure C2-1, there are three topological constructs: node, edge, and face
information on each edge. These constructs are formally defined in clause C.2.3. A brief
summary of the definition is repeated below.

a. Node information. Each edge will contain a start node and an end node
column. This topological information is used to define an edge direction
(digitizing direction).

b. Edge information. Right and left edges connect an edge to its neighbor edges
(thus the term "winged edge"). The right edge is the first edge connected to
the end node that is encountered when cycling around the node in a
counterclockwise direction. The left edge is the first edge connected to the
start node that is encountered when cycling around the node in a
counterclockwise direction.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 2 - Winged-Edge Topology

C2 - 2

Node
Edge
Counterclockwise Rotation

H

I
E

D4
3

2
B

F

G

J

1

Left Face

Left Edge

Start
Node

Right Face

Right Edge

End
Node

C5

6
7

A

Figure C2-1 Winged-Edge Components

c. Face information. With level 3 topology specified, each edge will contain a
left and right face. Left and right face are determined solely by the edge
direction. This information allows an edge to know its neighboring faces.
The universe face is always regarded as face 1.

C2.4.2.1 Inner and Outer Rings

The composition of a face's outer and inner rings are governed by the rules of winged-edge
topology. In addition, since edges are never considered inside a face but, rather, borders of
faces, floating edges within a face will be treated as inner rings. Figures C2-2, C2-3 and
C2-4 illustrate some cases of outer and inner rings.

5

Note:

There is no
inner ring

Figure C2-2 Face 5 is Represented as a Single Ring in the Ring Table

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 2 - Winged-Edge Topology

C2 - 3

5

Note:

The two inner
faces and their
connected edge
compose a single
inner ring and are
identified by a
single ring in the
ring table.

Figure C2-3 Face 5 is Represented as Two Rings in the Ring Table

5

Note:

The second ring in
the ring table
identifies the
floating edge
within the face

Figure C2-4 Face 5 is Represented as Two Rings in the Ring Table

C2.4.3 Winged-Edge Algorithm

Given the definition of a winged edge, every coverage containing faces and edges is
created in the same way. With the enforcement of a planar topological model, a consistent
navigation algorithm can be applied.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 2 - Winged-Edge Topology

C2 - 4

Figure C2-5 depicts a collection of faces and accompanying edges. To navigate a face, the
following algorithm is used:

a. Determine which face to draw. Determining which face to draw would
typically be driven by the selection of area features that have the attributes
desired; then key through the face and ring tables associated with the area.

An example of an area feature table consistent with Figure C2-5 is shown in
Table C2-1.

Face
Node
Edge

LEGEND

2

1
G

1

2

3
4

5

6
7

8

10 11
12

13

9

A

L

B
C

D

E

F

G

H

I

J

K

4

3
2

Tile 95

id start_node end_node right_face left_face right_edge left_edge coordinates

1 D E 2 1 2 6
2 E F 2 1 3 1
3 F G 2 1 4 2 Not
4 H G 1 2 3 5 Shown
5 H D 2 3 1 12
6 D C 1 3 7 5
7 C B 1 3 8 6
8 B A 1 3 9 7
9 A L 1 3 10 8

10 K L 3 1 9 11
11 K J 1 3 12 10
12 J H 1 3 4 11
13 I I 4 1 13 13

Figure C2-5 Winged-Edge Example, with Drawing Completely Contained within a Tile

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 2 - Winged-Edge Topology

C2 - 5

Table C2-1 Sample Area Feature Table for Figure C2-5

id tile_id fac_id <attribute 1>...< >
. . . .
. . . .
. . . .

436 95 3 1 ...
. . . .
. . . .
. . . .

Table C2-1 identifies tile 95 with face 3 as the primitive corresponding to area feature 436.
The face table for tile 95 for Figure C2-5 (Table C2-2) yields the following:

Table C2-2 Sample Face Table for Figure C2-5

id *.aft_id ring_ptr
. . .
. . .
. . .
3 436 7

The ring table for Figure C2-5 (Table C2-3) yields the following:

Table C2-3 Sample Ring Table for Figure C2-5

id fac_id start_edge
. . .
. . .
. . .
7 3 12

b. Now identify the start edge (in this case, 12).

c. Travel to the left edge to trace the left face; the right edge for the right face.
Because face 3 is the left face of edge 12, read the left edge record (edge 11).
Edge 11 leads to edge 10, edge 10 to edge 9, edge 9 to edge 8, edge 8 to edge
7, edge 7 to edge 6, edge 6 to edge 5, and edge 5 to edge 12.

d. Edge 12 is the start edge, so the cycle is complete.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 2 - Winged-Edge Topology

C2 - 6

The same figure can be navigated as a linear network, regardless of the existence of face
topology (ring list, left face, right face). Assume that a line feature table exists for this
example and that every line feature has an attribute column that is used to determine the
correct edge selection in the network (this table is as an Area to Edge Table). The value of
a line attribute will determine the traversal criteria and also determine when it will end.
The starting point and endpoint of the traversal are dependent upon the user's application.
A network can be traversed with various strategies. The example below illustrates a depth
first search. The algorithm is as follows:

a. Locate current edge with user application (edge 12).

b. Read end node of current edge and gather all edges incident at the node.

c. For each of the edges incident at the node, read the attribute value from the
associated line feature. Does the attribute have the desired value? If so,
continue with step e.

d. Go to step c. Repeat with next edge.

e. Decision. Has the network been completely traversed? If so, exit with
complete network. If not, go to step b.

C2.4.4 Cross-Tile Topology

Network navigation using the winged-edge topology can be extended to cross over
physical tile partitions, if they exist in the coverage. By using the information in the
previous examples, it becomes possible to introduce cross-tile constructs. Assume that
Figure C2-5 has been intersected with tile boundaries and that the new coverage in Figure
C2-8 has been created (with generalized edges along edge 5 in Figure C2-2).

Figure C2-8 depicts a single face broken into four faces by the intersection of four tiles.
The following discussion identifies several different occurrences at the tile boundaries and
covers retrieval of the original (untiled) face extent from the tiled faces through winged
edge topology.

When creating cross-tile topology, the following rules apply:

a. An edge is always broken when it intersects a tile boundary by placing a
connected node at the intersection in all adjacent tiles. See Figure C2-7, B, C,
G and H. All edges terminated by this connected node will have cross-tile
topology if an edge exists in the adjoining tile. See Figure C2-6, A through F.

b. The cross-tile edge will be the first edge in the adjacent tile, counterclockwise
from the referencing edge at the node. See Figure C2-6, A through F.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 2 - Winged-Edge Topology

C2 - 7

c. All edges which are coincident with a tile boundary (all coordinates for the
edge are on the boundary) occur in both tiles (see Figure C2-7, A, D, E and F)
and have cross-tile left or right face topology and have cross-tile left and right
edge topology. See Figure C2-6, A, B, D, E and F.

d. When a face is broken by a tile boundary, multiple faces are created by
closing the face along the tile boundary. See Figure C2-7, A. The edges used
to close faces on the boundary are treated as in c. above. See Figure C2-6, B
and E.

e. Connected nodes which occur on tile boundaries exist in all adjacent tiles (see
FIGURE C2-7, B, C, G and H), and reference both an internal and external
first edge, if an edge exists. The first edge is selected arbitrarily in both
internal and external tiles. If more than one tile is adjacent, the external first
edge is chosen arbitrarily from the first tile counterclockwise containing one
or more edges.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 2 - Winged-Edge Topology

C2 - 8

Figure C2-6 Cross-Tile Edge Rules

F.

C. D.

E.

B.A.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 2 - Winged-Edge Topology

C2 - 9

The following are additional examples of tile boundary primitive behavior:

Untiled

A. Face broken
by tile boundary

B. Edge broken
by tile boundary

C. Edge ending on
tile boundary

D. Face ending
on tile boundary

Tiled

E10

E 3

E10 E3

F4

F
F4 F7

E. Portion of a face coincident
 with tile boundary

Untiled

F4

F4
F7

E10

Tiled

E5

Tiled

E6 E5

E5

E7

Untiled

F. Edge coincident
 with tile boundary

Figure C2-7 Tile Boundary Primitive Behavior

G HEdge crosses at
il

Edge ends at
il

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 2 - Winged-Edge Topology

C2 - 10

C

B

A
1

2

1

MJ21
2

3

1

2
3

B

C

D

7 1

A MJ22
E

4

5

MJ12

3

9
1 2

1

3

4

A

C

B

D

MJ11 6

1

A

6
5

4

2 1

3

D

C

E
F

B

G

H

7

8

Face
Node
Edge

LEGEND

3

1
G

MJ12 Tile Name
Tile Edge
Boundary

Tile MJ21

id start
node

end
node

right face
face,tile,exface

left face
face,tile,exface

right edge
edge,tile,exedge

left edge
edge,tile,exedge coordinate

s

1 A B 2,-,- 1,-,- 2,MJ22,5 3,MJ11,6 Not
2 B C 2,-,- 1,MJ22,7 3,MJ11,7 1,MJ22,1 Shown
3 C A 2,-,- 1,MJ11,6 1,MJ11,6 2,MJ11,8

Tile MJ22

id start
node

end
node

right face
face,tile,exface

left face
face,tile,exface

right edge
edge,tile,exface

left edge
edge,tile,exedge coordinates

1 A B 7,-,- 1,-,- 2,-,- 5,MJ21,1 Not
2 B C 7,-,- 1,-,- 3,-,- 1,-,- Shown
3 D C 1,-,- 7,-,- 2,-,- 4,MJ12,3
4 D E 7,-,- 1,MJ12,9 5,MJ21,2 3,MJ12,1
5 E A 7,-,- 1,MJ21,2 1,MJ21,1 4,MJ21,3

Note: Tile names are shown for clarity. The triplet id actually contains the tile id.

Figure C2-8 Cross-Tile Edge Example

a. Start with tile MJ21, edge 1. Read the left edge. Choose to cross into tile
MJ11, edge 6.

b. Chain from edge 6, 5, 4, 3, 2, and 1 within tile MJ11.
c. From edge 1 in MJ11, go across to tile MJ12, edge 1.
d. From edge 1 in MJ12, cross tiles into tile MJ22, edge 3.
e. Chain through edges 3, 2, and 1.
f. From edge 1 in MJ22, cross into tile MJ21, edge 1.
g. When the end of the face cycle is reached, exit.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 3 - Feature Class Relations

C3-1

Appendix C3 - Feature Class Relations

C3.1 GENERAL

This appendix provides information, discussion, and examples concerning feature class

C3.2 APPLICABLE DOCUMENTS

This clause is not applicable to this appendix.

C3.3 DEFINITIONS

For purposes of this appendix, the definitions of Part 2 Clause 4.1 of the main document
shall apply.

In this appendix, "primitive_id" (alternatively "prim_id") is used as a generic replacement
for "fac_id", "edg_id", etc. In practice, "primitive" or "prim" are replaced with the actual
primitive table name.

C3.4 GENERAL INFORMATION

C3.4.1 Overview

One of the most important parts of designing a VRF database is the implementation of a
conceptual feature class model into feature class tables. The heart of this implementation
concerns the relationships with the feature class tables and their composing primitive
tables.

The structure of feature classes, and the use of join tables, thematic indexes etc. is set out
in the appropriate product specification.

Depending on the design, the relationships between the features and primitives can be one-
to-one (1:1), one-to-many (1:N), many-to-one (N:1), or many-to-many (N:M). This
appendix is intended to help designers implement their conceptual feature classes with
three major implementation constraints: software performance, tiled coverages, and
indexing.

C3.4.1.1 Software Performance

Software performance is a leading consideration in a VRF database design. VRF is
designed to support interactive software use. In order for software to respond optimally,
the designer must determine the intended use of the database product. If intended for
interactive use, the designer should design for optimal performance. If the database is
strictly for exchange purposes and not interactive use, a simpler implementation is
recommended.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 3 - Feature Class Relations

C3-2

C3.4.1.2 Tiled Coverages

Tiled coverages require a triplet id column in the feature table or associated join table to
define the relationship between features and tiled primitives. Alternatively, the tile and
primitive id components of the triplet id can be maintained as separate columns in the
feature or join tables. Depending on the feature table type, Table C3-1 lists the column
names that shall be used as the join column name.

Table C3-1 Feature Table Join Column Definitions

Area Feature fac_id
Line Feature edg_id
Point Feature nod_id1

Text Feature txt_id
Tile ID tile_id2

Notes:
1 If modeled as separate tables this will be cnd_id or end_id.
2. The tile_id column is required in tiled coverages when the primitive id

column is not defined as data type K (triplet id)

C3.4.1.3 Indexing

VRF is designed for interactive use, and the following indexing recommendations apply to
help software users achieve these goals.

C3.4.1.3.1 Thematic Indexes

Implementation of thematic indexes is generally recommended on columns which are
likely candidates for thematic queries. For example, thematic indexes on the primitive_id
(i.e. fac_id, edg_id, nod_id, or cnd_id or end_id, txt_id) and tile_id columns in feature or
join tables can improve software searches based on features located per tile. Note that
VRF does not support the creation of thematic indexes on columns defined as data type K
(triplet id). See Table C-67 of the DIGEST VRF Standard for a list of allowable data
types.

C3.4.1.3.2 Spatial Indexes

All primitive tables in a VRF database should carry associated spatial indexes. The
software performance can be improved significantly.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 3 - Feature Class Relations

C3-3

C3.4.1.3.3 Feature Indexes

Feature indexes enhance the retrieval of feature information when given a selected
primitive. Implementation of feature indexes is generally recommended when multiple
feature classes of the same primitive type exist within a single coverage (i.e. multiple line
feature tables within the Ground Transportation coverage; roadl.lft and railroadl.lft).
Implementation of thematic indexes on the following columns in feature index tables (*.fit)
is generally recommended to further enhance performance: primitive_id, tile_id, fc_id,
and feature_id.

C3.4.2 Feature and Primitive Table Relationships

The following subclauses provide a number of implementations for feature and primitive
table relationships.

Each subclause is based on the five types of relationships (1:1, 1:N, N:1, N:M, and
complex). Within each subclause, there are a variety of implementations available,
depending on tiling, performance, and index support.

C3.4.3 One-to-One Relationships

When there is a 1:1 relationship between the feature and primitive tables, the relations are
relatively straightforward. Note that for this discussion, a one-to-one relationship between
features and primitives means that a feature is composed of one and only one primitive. It
does not, however, imply that every primitive is associated with one and only one feature.
For example, in a level three coverage with area features, the universe face (face 1) should
not be associated with any feature since the outer ring is undefined. Since the Digital
Geographic Information Exchange Standard (DIGEST) mandates definition of the feature-
to-primitive relation, a primitive_id column (i.e. fac_id) is added to the feature table to
define the relationship to the appropriate primitive. Only in very unique circumstances
(i.e. An untiled, level one or two coverage with one feature class for each primitive type)
can the row id in a feature table be used as a foreign key into the row id of the associated
primitive table. The reverse relation (primitive-to-feature), although optional for DIGEST-
compliant data, is recommended for performance reasons.

C3.4.3.1 1:1 Feature Class in an Untiled Coverage

The untiled 1:1 design (Figure C3-1) is the simplest implementation. Its performance is
optimal going from the feature to its primitive. The primitive_id column in the feature
table acts as a foreign key, providing a direct link to the associated record in the primitive
table. However, the relationship going from the primitive back to the feature is referred to
as an indirect link since the primitive_id column of all records in the feature table must be
examined sequentially to find a match for a selected primitive. Such indirect links provide
poor performance and are generally not recommended.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 3 - Feature Class Relations

C3-4

id

Feature Table

prim_id

21
2
3
4
5

other
attrib

3

4

1
5

direct link

indirect link

id

Primitive

1
2
3
4
5

Figure C3-1. Implementation of a 1:1 Feature Class in an Untiled Coverage

- Direct links provide good performance going from the feature to its primitive.

- However, indirect links going from the primitive back to the feature provide
poor performance.

C3.4.3.2 1:1 Feature Class in a Tiled Coverage

The tiled 1:1 design (Figure C3-2) is required to maintain direct relations between one
feature and one primitive stored in only one tile. The performance of this implementation
is good going from the feature to its primitive. However, performance going from the
primitive back to the feature is poor because of the indirect link. For example, the
primitive_id and tile_id columns of all records in the feature table must be examined to
find all matches for a selected primitive.

id

Feature Table

1
2
3
4
5

other
attrib

1
1

2

1
2

di
re
ct
 l
in
k

indirect link

direct link

id

1
2
3
4
5

Tile 1 - Primitive

indirect link

tile_id prim_id

2
4

1

1
3

id

1
2
3
4
5

Tile 2 - Primitive

Figure C3-2. Implementation of a 1:1 Feature Class in a Tiled Coverage

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 3 - Feature Class Relations

C3-5

- Direct link between feature and primitive provide relatively good
performance.

- However, indirect links going from the primitive back to the feature provide
poor performance.

C3.4.3.3 1:1 Feature Class in a Tiled Coverage with Thematic Indexes

Implementation of thematic indexes on the tile_id and/or primitive_id columns in the
feature table described in C3.4.3.2 (Figure C3-3) can improve the performance when going
from feature to primitive and is generally recommended. For example, a thematic index on
the tile_id column in the feature table would provide a list of all records for a given tile_id
value and thus improve performance on a query of all features within a selected tile.
Recall (see C3.4.1.3.1), that thematic indexes cannot be implemented on a primitive_id
column defined as a data type K (triplet id). Performance of the indirect link between
primitive and feature is also enhanced by implementation of thematic indexes on the tile_id
and primitive_id columns of feature tables. Without indexes on these columns, a
sequential search of all records in the feature table would have to be performed to find all
matching ids. The indexes improve performance by providing a list of the records with
matching ids.

Thematic Index
(on tile_id)

id

1
2
3
4
5

Tile 2 - Primitive

id

Feature Table

1
2
3
4
5

other
attrib

1
1

2

1
2

tile_id prim_id

2
4

1

1
3

direct link

id

1
2
3
4
5

Tile 1 - Primitive

Thematic Index
(on prim_id)

Figure C3-3 Implementation of a 1:1 Feature Class in a Tiled Coverage with a Thematic
Index

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 3 - Feature Class Relations

C3-6

- Implementation of thematic indexes improves performance of the direct link
between feature and primitive.

- Performance of the indirect link between primitive and feature is also
improved with the implementation of thematic indexes on the tile_id and
primitive_id columns in feature tables.

C3.4.3.4 1:1 Feature Classes in a Tiled Coverage with feature_id Pointers in the
Primitive Tables

One way to improve the performance of the implementation described in C3.4.3.3 is by
adding a feature_id column to the primitive tables (Figure C3-4) This improves
performance by adding a direct link between the primitive and associated feature.
However, database designers and software developers should be aware of some of the
shortcomings and/or limitations of this feature class design. Implementation of this design
in a coverage with multiple feature classes for a given primitive type (i.e. roadl.lft,
railroadl.lft, tunnell.lft in a Ground Transportation Coverage) results in an unnormalized
primitive table (many of the feature_id columns will contain null values). Secondly, this
design does not allow for the existence of coincident features (N:1 relations) in the same
feature class (the feature_id column can only contain one reference to a feature in a given
feature class).

id

Feature Table

1
2
3
4
5

other
attrib

1
1

2

1
2

tile_id prim_id

2
4

1

1
3

direct link

Tile 1 - Primitive

other columnsid

1
2
3
4
5

feature_id

3
1

null
2

null

Tile 2 - Primitive

1
2
3
4
5

5

4
null

null
null

other columnsid feature_id

Figure C3-4 Implementation of a 1:1 Feature Class in a Tiled Coverage with feature_id
Columns Added to the Primitive Tables

- Feature-to-Primitive and Primitive-to-Feature performance is good because of
the implementation of direct links

- Unnormalized tables and limitations in coincident features represent
disadvantages of this type of design.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 3 - Feature Class Relations

C3-7

C3.4.3.5 1:1 Feature Classes in a Tiled Coverage with feature_id Pointers in the
Primitive Tables and Thematic Indexes

Addition of thematic indexes to the implementation described in C3.4.3.4. improves the
performance in both the Feature-to-Primitive and Primitive-to-Feature directions
(Figure C3-5). See C3.4.3.3. for a discussion of how thematic indexes improve
performance. Thematic indexes are generally recommended on the tile_id and
primitive_id columns in feature table(s).

Thematic Index
(on tile_id)

Thematic Index
(on prim_id)

id

Feature Table

1
2
3
4
5

other
attrib

1
1

2

1
2

tile_id prim_id

2
4

1

1
3

direct link

Tile 1 - Primitive

other columnsid

1
2
3
4
5

feature_id

3
1

null
2

null

Tile 2 - Primitive

other columnsid

1
2
3
4
5

feature_id

5
null
4

null
null

Figure C3-5 Implementation of a 1:1 Feature Class in a Tiled Coverage with feature_id
Columns in the Primitive Tables and Thematic Indexes

- Feature-to-Primitive and Primitive-to-Feature performance is very good
because of the implementation of direct links as well as the addition of
thematic indexes.

- Unnormalized tables and limitations in coincident features represent
disadvantages of this type of design (see C3.4.3.4).

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 3 - Feature Class Relations

C3-8

C3.4.3.6 1:1 Feature Classes in a Tiled Coverage with Feature Indexes

Implementation of Feature Indexes (Figure C3-6) to improve Primitive-to-Feature
performance is an alternative to adding feature_id pointers to the primitive tables. This
type of implementation is probably best suited for coverages with multiple feature classes
of the same primitive type since it eliminates non-normalized primitive tables. It also
allows for the existence of coincident features within the same feature class.
Implementation of thematic indexes on the following columns in the Feature Index Table
(fit) is recommended: primitive_id, tile_id, fc_id, and feature_id.

id

1
2
3
4
5

Tile 2 - Primitive

id

Feature Table

1
2
3
4
5

other
attrib

1
1

2

1
2

tile_id prim_id

2
4

1

1
3

direct link

id

1
2
3
4
5

Tile 1 - Primitive

id

Feature Index Table (fit)

1
2
3
4
5

prim_id feature_id

1
1

2

1
2

tile_id fc_id

1
1

1

1
1

2
4

1

1
3

1
2

5

3
4

Figure C3-6 Feature-to-Primitive and Primitive-to-Feature Linkage

- Feature-to-Primitive and Primitive-to-Feature performance is very good
because of the implementation of direct links as well as the addition of a
feature index. Performance of this type of design is further enhanced with the
implementation of thematic indexes on columns in the Feature Index Table
(fit) and Feature Tables.

- This design eliminates unnormalized primitive tables and allows the creation
of coincident features in the same feature class.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 3 - Feature Class Relations

C3-9

C3.4.4 One-to-Many Relationships

The next relation type is one in which a single feature is composed of many primitives.
This type of feature is often referred to as a compound feature and requires implementation
of a join table to define the one-to-many relationship between a feature and its associated
primitives.

C3.4.4.1 1:N Feature Class in an Untiled Coverage Using Join Tables

As stated in C3.4.4, a join table is required to define the one-to-many relationship between
a feature and its associated primitives. The primitive_id column in the join table acts as a
foreign key and provides a direct link to the primitive(s) associated with a selected feature.
The reverse relationship (primitive-to-feature) is an indirect link and provides poor
performance. For example, the primitive_id column of all records in all feature join tables
would have to be examined to find the feature associated with a selected primitive.

direct link

Primitive table

other columnsid

1
2
3
4
5
6

id

Feature Join Table

1
2
3
4
5

1
2

1

1
2

feature_id prim_id

1
2

6

4
3

6
7

3
3

8
12

id

Feature Table

1
2
3
4
5

(other
attrib)

6
7

indirect link

Figure C3-7 Implementation of 1:N Feature Class in an Untiled Coverage with a Join
Table

- Although a direct link between feature and primitive(s) is provided by the
primitive_id column in the join table, a sequential search of the feature_id
column must still be performed to find all primitives associated with a
selected feature. As a result of the sequential search, performance going from
the feature to primitive is relatively slow.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 3 - Feature Class Relations

C3-10

- The indirect link going from the primitive back to the feature provides poor
performance.

C3.4.4.2 1:N Feature Class in an Untiled Coverage with a Thematic Index

Addition of a thematic index to the implementation described C3.4.4.1 can improve the
performance when going from feature-to-primitive. For example, a thematic index on the
feature_id column in the join table will improve performance on a query which needs to
find all primitives associated with a selected feature. Note that primitive to feature
performance is still poor because of the indirect link.

direct link

Primitive Table

other columnsid

1
2
3
4
5
6

id

Feature Join Table

1
2
3
4
5

1
2

1

1
2

feature_id prim_id

1
2

6

4
3

6
7

3
3

8
12

id

Feature Table

1
2
3
4
5

(other
attrib)

6
7

indirect link

Thematic Index
(on feature_id)

Figure C3-8 Implementation of a 1:N Feature Class in an Untiled Coverage
using Join Tables and Thematic Indexes

- Addition of a thematic index to the feature_id column in the join table
improves the performance of this feature class design when going from the
feature to its primitive(s).

- However, the indirect link going from the primitive back to the feature
provides poor performance.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 3 - Feature Class Relations

C3-11

C3.4.4.3 1:N Feature Class in a Tiled Coverage

The addition of tiles in a 1:N relationship makes for a complex implementation. The
implementation shown in Figure C3-9 is conceptually clean but will perform poorly with
software because of the lack of thematic indexes.

id

1
2
3
4
5

Tile 2 - Primitive

(other columns)

direct link

id

1
2
3
4
5

Tile 1 - Primitive

(other columns)

id

Feature Join Table

1
2
3
4
5

feature_id

1
1

1

2
2

tile_id prim_id

1
2

3

1
2

6
7

2
1

3
4

3
3

1
2
1
2
1

id

Feature Table

1
2
3
4
5

(other
attrib)

6
7

indirect link

Figure C3-9 Implementation of a 1:N Feature Class in a Tiled Coverage

- Although a direct link between feature and primitive(s) is provided by the
tile_id and primitive_id columns in the join table, a sequential search of the
feature_id column must still be performed to find all primitives associated
with a selected feature. As a result of the sequential search, performance
going from the feature to primitive is relatively slow.

- The indirect link going from the primitive back to the feature provides poor
performance.

C3.4.4.4 Tiled 1:N Coverages with feature_id Pointers in the Primitive Tables

The addition of a feature_id column to the primitive tables (Figure C3-10) provides good
performance from the primitive to the feature. However, keep in mind the disadvantages
and/or shortcomings of this method as identified in C3.4.3.4. Performance from the
feature to the join table to the primitive is relatively poor without the implementation of
thematic indexes.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 3 - Feature Class Relations

C3-12

id

1
2
3
4
5

Tile 1 - Primitive
other
columnsfeature_id

1
2
1
3

null

direct link

id

1
2
3
4
5

feature_id

1
1

1

2
2

tile_id prim_id

1
2

3

1
2

6
7

2
1

3
4

3
3

1
2
1
2
1

id

Feature Table

1
2
3
4
5

(other
attrib)

6
7

id

1
2
3
4
5

Tile 2 - Primitive
other
columnsfeature_id

1
2
3

null
null

direct link

Feature Join Table

Figure C3-10 Implementation of a 1:N Feature Class in a Tiled Coverage that includes
feature_id Columns in Primitive Tables

- Primitive-to-Feature performance is good because of the implementation
of direct links. However, be aware of the shortcomings and disadvantages
of the implementation of feature_id pointers in primitive tables (see
C3.4.3.4)

- Although a direct link between feature and primitive(s) is provided by the
tile_id and primitive_id columns in the join table, a sequential search of
the feature_id column must still be performed to find all primitives
associated with a selected feature. As a result of the sequential search,
performance going from the feature to primitive is relatively slow.

C3.4.4.5 1:N Feature Class in a Tiled Coverage with feature_id Pointers in the
Primitive Tables and Thematic Indexes

The addition of thematic indexes to columns in the join table (Figure C3-11) improves
performance going from the feature to primitive(s). Thematic indexes are generally
recommended on the feature_id and tile_id columns in join tables. Implementation of
feature_id pointers in primitive tables provides good performance going from the primitive
to feature. However, keep in mind the disadvantages and/or shortcomings of this method
as identified in C3.4.3.4.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 3 - Feature Class Relations

C3-13

id

1
2
3
4
5

Tile 1 - Primitive
other
columnsfeature_id

1
2
1
3

null

direct link

id

1
2
3
4
5

feature_id

1
1

1

2
2

tile_id prim_id

1
2

3

1
2

6
7

2
1

3
4

3
3

1
2
1
2
1

id

Feature Table

1
2
3
4
5

(other
attrib)

6
7

id

1
2
3
4
5

Tile 2 - Primitive
other
columnsfeature_id

1
2
3

null
null

direct link

Thematic Index
(on feature_id)

Feature Join Table

Thematic Index
(on tile_id)

Figure C3-11. Implementation of a 1:N Feature Class in a Tiled Coverage that includes
feature_id Columns and Thematic Indexes

- Feature-to-Primitive and Primitive-to-Feature performance is good
because of the implementation of direct links as well as the addition of
thematic indexes

- Be aware of the shortcomings and disadvantages of the implementation of
feature_id pointers in primitive tables (see C3.4.3.4)

C3.4.4.6 1:N Feature Class in a Tiled Coverage with Feature Indexes and Thematic
Indexes

As stated in C3.4.3.6, implementation of feature indexes to improve Primitive-to-Feature
performance is an alternative to adding feature_id pointers to primitive tables. It is
probably best suited for coverages with multiple feature classes of the same primitive type
since it eliminates non-normalized primitive tables. Implementation of thematic indexes
on the feature_id and tile_id column in the join tables as well as the following columns in
the Feature Index Tables (fit's) is generally recommended: primitive_id, tile_id, fc_id, and
feature_id.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 3 - Feature Class Relations

C3-14

id

1
2
3
4
5

feature_id

1
1

1

2
2

tile_id prim_id

1
2

3

1
2

6
7

2
1

3
4

3
3

1
2
1
2
1

id

Feature Table

1
2
3
4
5

(other
attrib)

6
7

id

Feature Index Table (fit)

1
2
3
4
5

prim_id feature_id

1
1

2

1
1

tile_id fc_id

1
1

1

1
1

1
2

1

3
4

1
2

1

1
3

direct link

id

1
2
3
4
5

Tile 2 - Primitive

id

1
2
3
4
5

Tile 1 - Primitive

Feature Join Table

6
7

2 12 2
2 13 3

Figure C3-12 Implementation of a 1:N Feature Class in a Tiled Coverage with Feature
Indexes

Feature-to-Primitive performance is good because of the direct link and thematic
indexes.

Primitive-to-Feature performance is good because of the implementation of
feature indexes.

C3.4.5 Many-to-One Relationships

When multiple features are associated with the same primitive, the relationship is often
referred to as coincident features or N:1. For the sake of brevity, no examples of N:1
relations are provided. Instead, refer to clause C3.4.3 (1:1 relations) for the different types
of performance enhancers available, keeping in mind the shortcomings/disadvantages
identified in C3.4.3.4.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 3 - Feature Class Relations

C3-15

C3.4.6 Many-to-Many Relationship

In many-to-many (N:M) relationships, many features can relate to many primitives and the
reverse. Many features can relate to one primitive, and many primitives can relate back to
one feature. This relation is established using a join table. Many-to-many relations are
typical and often unavoidable in an integrated coverage database design. Again, for the
sake of brevity, no examples are provided for N:M relations. Instead, refer to clauses
C3.4.3 and C3.4.4 for the type of performance enhancers available, making note of the
advantages and disadvantages of each.

C3.4.7 Complex Feature Relationships

A complex feature may be constructed from simple features only, or from other complex
features. This forms a hierarchical feature relationship. The need for complex features
arises when a group of features requires different attributes than that of other features.

C3.4.7.1 One Complex Feature Composed of Simple Features from Multiple Feature
Classes

As Figure C3-13 shows, a complex feature can be composed of simple features from
multiple feature classes (in this case, an area feature class and line feature class). The
implementation shown in Figure C3-13 is useful when not all simple features are part of a
complex feature or when the complex feature is created after the simple features. This type
of complex feature design has its limitations. Because of the implementation of feature_id
foreign keys (i.e. *.aft_id and *.lft_id) in the complex feature table, a complex feature
cannot be composed of more than one simple feature from a given feature class. For
example, this type of design does not support the creation of an Interstate Hwy. complex
feature composed of a number of road line simple features. Implementation of a complex
feature join table which defines the complex feature to simple feature relations is generally
considered a better design (see C3.4.7.2.)

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 3 - Feature Class Relations

C3-16

id

Complex Feature Table

1
2

*.aft_id

4
5

2
3

id

1
2
3
4
5

Line Feature Table

id

1
2
3
4
5

Area Feature Table

*.lft_id
other
columns

other columns other columns

Figure C3-13. Implementation of a Complex Feature composed of
 Simple Features in Separate Tables

C3.4.7.2 Many Complex, Many Simple Features

Many complex features may be made up of many simple features in one feature table. The
implementation shown in Figure C3-14 requires complex features and simple features to
be created at the same time. It also requires the implementation of a complex feature join
table to describe the complex feature to simple feature relations. Performance can be
improved by adding thematic indexes on both the columns in the join table.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 3 - Feature Class Relations

C3-17

id

Complex Feature Table

other attributes

1
2
3
4
5
6
7

id

Complex Feature Join

#.cft_id *.?ft_id

1
2
3
4
5
6
7

1
2
1
2
1
3
3

1
1
2
2
3
4
5

id

Simple Feature Table

other attributes

1
2
3
4
5
6
7

Note: "?ft" is one
of "aft", "pft",
"lft", "tft" or
"cft"

Figure C3-14 Implementation of a Complex Feature Relationship in which Many
Complex Features are Made Up of Many Simple Features in One Feature Table

C3.4.7.3 An Example of a Coverage with Simple and Complex Features

Table C3-2 is the feature class schema table from the Terminal Procedure Coverage of
DFLIP Prototype No. 2. The terminal procedure complex feature (termpc) consists of
action points (pactc) which are related to connected nodes, Instrument Landing System
(ILS) line features (ilsl) and other route line features (seg2l). Records 3 and 4 show the
relationships for the action points (pactc) and their connected nodes (cnd), records 7 to 10
show how the ILS lines (ilsl) are joined to multiple edges, and records 15 to 18 show how
route lines (seg2l) are joined to multiple edges. The complex feature (termpc)
realtionships begin with record 19 and continue through record 40. Figure C3-15 is helpful
in tracing each record to the first and second table columns of the record.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 3 - Feature Class Relations

C3-18

cnd

pactc.pft

pactc.cjt ilsl.cjt seg21.cjt

ilsl.lft

ilsl.ljt

edg

seg21.lft

seg21.ljt

edg

termpc.cft

24 33 40 25

19 32

23

22

20

21

34

35

36 37

39

38

26

27

31

30

28
29

Figure C3-15 fcs Record Numbers Linking Tables for Complex Feature

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 3 - Feature Class Relations

C3-19

Table C3-2 Content and Format for Terminal Procedures
Coverage Feature Class Schema Table

{Header length}L;
Terminal Procedures Feature Class Schema Table;-;
id=I,1,P,Row Identifier,-,-,-,:
feature_class=T,7,N,Name of Feature Class,-,-,-,:
table1=T,12,N,First Table in a Relationship,-,-,-,:
table1_key=T,16,N,Column Name in First Table,-,-,-,:
table2=T,12,N,Second Table in a Relationship,-,-,-,:
table2_key=T,16,N,Column Name in Second Table,-,-,-,:;
1 nav2c nav2c.pft cnd_id cnd id
2 nav2c cnd id nav2c.pft cnd_id
3 pactc pactc.pft cnd_id cnd id
4 pactc cnd id pactc.pft cnd_id
5 hold2c hold2c.pft cnd_id cnd id
6 hold2c cnd id hold2c.pft cnd_id
7 ilsl ilsl.lft id ilsl.ljt ilsl.lft_id
8 ilsl ilsl.ljt edg_id edg id
9 ilsl edg id ilsl.ljt edg_id
10 ilsl ilsl.ljt ilsl.lft_id ilsl.lft id
11 rab2l rab2l.lft id rab2l.ljt rab2l.lft_id
12 rab2l rab2l.ljt edg_id edg id
13 rab2l edg id rab2l.ljt edg_id
14 rab2l rab2l.ljt rab2l.lft_id rab2l.lft id
15 seg2l seg2l.lft id seg2l.ljt seg2l.lft_id
16 seg2l seg2l.ljt edg_id edg id
17 seg2l edg id seg2l.ljt edg_id
18 seg2l seg2l.ljt seg2l.lft_id seg2l.lft id
19 termpc termpc.cft id pactc.cjt termpc.cft_id
20 termpc pactc.cjt pactc.pft_id pactc.pft id
21 termpc pactc.pft cnd_id cnd id
22 termpc cnd id pactc.pft cnd_id
23 termpc pactc.pft id pactc.cjt pactc.pft_id
24 termpc pactc.cjt termpc.cft_id termpc.cft id
25 termpc termpc.cft id seg2l.cjt termpc.cft_id
26 termpc seg2l.cjt seg2l.lft_id seg2l.lft id
27 termpc seg2l.lft id seg2l.ljt seg2l.lft_id
28 termpc seg2l.ljt edg_id edg id
29 termpc edg id seg2l.ljt edg_id
30 termpc seg2l.ljt seg2l.lft_id seg2l.lft id
31 termpc seg2l.lft id seg2l.cjt seg2l.lft_id
32 termpc seg2l.cjt termpc.cft_id termpc.cft id
33 termpc termpc.cft id ilsl.cjt termpc.cft_id
34 termpc ilsl.cjt ilsl.lft_id ilsl.lft id
35 termpc ilsl.lft id ilsl.ljt ilsl.lft_id
36 termpc ilsl.ljt edg_id edg id
37 termpc edg id ilsl.ljt edg_id
38 termpc ilsl.ljt ilsl.lft_id ilsl.lft id
39 termpc ilsl.lft id ilsl.cjt ilsl.lft_id
40 termpc ilsl.cjt termpc.cft_id termpc.cft id

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 3 — Feature Class Relations

C3-20

[This page intentionally left blank]

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 4 -Tiling

C4-1

Appendix C4 - Tiling

C4.1 GENERAL

This appendix provides information and discussion concerning tiling for a VRF database.

C4.2 APPLICABLE DOCUMENTS

This clause is not applicable to this appendix.

C4.3 DEFINITIONS

For purposes of this appendix, the definitions of Part 2 clause 4.1 of the main document
shall apply.

C4.4 GENERAL INFORMATION

C4.4.1 Rationale

Global scale databases inevitably consist of large amounts of data. In processing
geographic data, entire files often need to be managed in memory, imposing a definite
limit on database size. Tiling is the method used to break up geographic data into spatial
units small enough to fit within the limitations of the desired hardware platform and media.
VRF libraries are partitioned into a tile structure defined in a particular product
specification and tileref coverage. The naming convention is based on the geographic
reference system GEOREF. The actual tile size is a product-specific question dependent
upon the minimum hardware configuration and distribution media. The following
paragraphs describe how VRF implements tiling to subdivide a database.

C4.4.2 Cross-Tile Topological Primitives

One shortcoming of past tiling implementations occurs when primitives are split up into
different files, which also removes the topological connectivity of the feature. If a lake
feature's primitive is split into two separate tiles, the topological connection between the
primitives of the lake is lost. They will still appear together when both tiles are drawn on
the screen, but any analysis that tries to follow the original connectivity of the lakeshore
will have to do a lot of extra processing and searching. It would thus be advantageous for
the primitives of the tiled lake shoreline to refer to each other. There is a need for
primitives that cross tile boundaries to refer both to the tile boundary itself (in order to
maintain tile topology) and to its cross-tile continuation in order to simplify retrieval of the
original feature. VRF meets this need by referring to edges using a triplet id that contains
an internal reference to a boundary or edge within the current tile; when appropriate, the
triplet id also contains an external reference to an edge in a neighboring tile.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 4 - Tiling

C4-2

C4.4.3 Feature Classes

Tiling introduces a constraint on feature classes as well as primitives. Tiling is a low-level
implementation issue related to hardware and storage limitations, and should have no
effect upon conceptual structures like feature classes. Unfortunately, when primitives are
broken up into separate tables for tiling, their corresponding attributes are broken up as
well. VRF resolves this by maintaining the attribute tables and feature class tables
unbroken and structuring them so that they can be processed sequentially rather than all at
once, thus obviating the need to break them up to meet hardware limits. These tables are
stored within a coverage, and the actual file subdivisions representing the tiles appear as
directories underneath the coverage.

The problem concerns connecting a primitive, now stored in one of many smaller files, to
its attributes, now stored in a single large file. This is done in accord with standard
relational design rules by adding a column for each feature class onto the primitive file,
containing the row id from the master table that has the attributes for that primitive. If five
feature classes are derived from the primitive topological layer, then five extra columns
will be added to that primitive table. Adding another column for each feature class could
make for a very large table since there can be many feature classes in a coverage.

Feature classes apply to all three primitive dimensions or to all products, or to all
coverages, but for vertically or thematically integrated data the number could still easily
approach 100. The reason for a pointer back to the feature is merely for performance
issues. Please refer to feature class construction issues in Appendix C3.

VRF handles tiling and data partition problems at the primitive level by means of the
triplet id to maintain cross-tile topology and the extra feature class columns on the
primitive to maintain links to the more logically consistent single attribute table. There is
also the need to maintain the tiles themselves and to store reference data about the tiles,
their size, scheme, and so forth. This is accomplished with the tile reference coverage.

C4.4.4 Tile Reference Coverage

The tile coverage is a level 3 topology coverage representing only the tiles. No other data
besides tile boundaries (defined by faces) and tile labels is used. This is stored as a
separate coverage at the library level and acts as a graphic index to the tiling scheme,
showing all of the tiles and only those tiles in the library, their names, and their relation to
each other. The area feature table of this coverage plays a very important role. Since it
can store attributes about each tile, it can be used to hold data density figures, tile data
volume, summary contents for each feature class, and other metadata to assist in managing
the database at a coarse tile-by-tile level.

The tile size, actual tile layout, and handling of text that crosses tile borders are not
addressed in this standard since they are all product-specific questions.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 5 - Data Quality

C5 - 1

Appendix C5 - Data Quality

C5.1 GENERAL

This appendix provides information, discussion, and examples concerning data quality
issues in a VRF database.

C5.2 APPLICABLE DOCUMENTS

This clause is not applicable to this appendix.

C5.3 DEFINITIONS

For purposes of this appendix, the definitions of Part 2 clause 4.1 of the main document
shall apply.

C5.4 GENERAL INFORMATION

C5.4.1 VRF Data Quality

This appendix describes basic strategies for storing data quality (dq) information within
VRF databases. The following subclauses discuss general data quality concepts,
implementation of the data quality table, and data quality coverages within VRF.

C5.4.2 General Concepts

The multilevel structure (i.e., primitive, feature , feature class, coverage, library, and
database) of a VRF database affects the strategies used to store dq information. Data
Quality information is often available at varying levels of specificity, from individual
feature attributes to expressions of quality relevant to an entire database. Therefore, it is
necessary for the VRF data producer to determine the appropriate level in the hierarchy for
the various types of dq information present. When developing an implementation strategy,
the data producer should also review the available dq information within the context of
coverage (thematic) associations as well as spatial extent, as these will influence the use of
standard data quality tables and/or the development of separate data quality coverages.

When dq information is stored at multiple levels in a VRF database, lower level
information always takes precedence over that at higher levels. Data producers should
account for this when compiling dq information to be stored in VRF. For example, a data
producer may make a general statement at the library level that a coverage has been
derived from a range of sources, and specify at the primitive level what a given feature's
exact origins are. Alternatively, some variations may be organized by simple spatial
divisions, such as source map boundaries. In such a case, feature level source information
would be highly repetitious, and a data quality coverage might be most effective.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 5 - Data Quality

C5 - 2

C5.4.3 Data Quality Tables

The data quality table (Table C-52) is a device for storing standard and nonstandard types
of dq information. Standard information is explicitly defined within the dq table.
Nonstandard information is that which is not accounted for in the dq table and must be
stored outside the standard fields. The dq table can be implemented on the database,
library, or coverage level, depending upon the uniformity of the affected data with respect
to known dq characteristics. Key characteristics are source, positional accuracy, attribute
accuracy, logical consistency, completeness, resolution, and lineage. All of these
characteristics can be documented within standard dq table fields, with the exception of
lineage.

C5.4.3.1 Lineage

Lineage information must be stored within the dq table narrative file, which should be
given the name "lineage.doc." The lineage file is an important component of the dq
documentation system, since the data producer must inevitably make key decisions
affecting the data's fitness for use that cannot be described in standard fields. Lineage
information may also change significantly from coverage to coverage, even when all of the
data is derived from a single source. At a minimum, the lineage file should contain
information on processing tolerances, interpretation rules applied to source materials, and
basic production and quality assurance procedures. All lineage information available
through the source should also be incorporated here.

C5.4.3.2 Placement of DQ Table

When implementing dq tables, the user must determine at what level within the VRF
hierarchy the dq table(s) should be established. This will vary depending upon the specific
nature of the dq information. For example, entire libraries originating from a single source
may be best served with a single table at that level, augmented by a series of data
producer-defined tables implemented at the coverage level to document more specific
information. The dq table can also be implemented on multiple levels simultaneously,
with general (broad) information provided at the higher levels, and progressively more
detailed information specified at the lower levels. At a minimum, some form of dq
information should be present at the database or library levels to provide an overview of
characteristics and to describe the techniques used to store dq information within the
database as a whole. With respect to VRF tables in general, the data producer is not
restricted to the standard dq table. The table can be augmented as needed with producer-
defined related files within the hierarchy.

C5.4.4 Data Quality Coverages

 Data quality coverages delineate spatial variations in dq information across a database or a
library by assigning unique quality characteristics to areas. Within this context, the
database and library levels must be viewed as having distinct spatial extents to which
attributes can be assigned, while data quality coverages are created to document spatial
variations on a more detailed level.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 5 - Data Quality

C5 - 3

Data quality coverages are very useful as visual reference data that allow data producers to
capture anomalous data behavior within the context of known spatial variations. They are,
by definition, level 3 topology coverages. They can be physically stored at any level
(above the feature level) within the VRF hierarchy, independent of the level of information
being represented.

The manner in which the dq information is structured within the coverage will be
dependent upon the relationships between spatial variations, data sources, and lineage
information. Edges, as well as areas, can also be attributized within dq coverages, for
example, to document the interaction of disparate data sets that are not well reconciled. A
more specific example is where contour lines from different data sources meet along a
common edge and fail to match positionally. In this case, the data producer could
document this discrepancy as an attribute of the seam (edge) between the adjacent sources.

Unlike tabular dq information, the data producer should refrain from creating "nested" dq
coverages at multiple levels, as these can greatly complicate the interpretation of the
information. Rather, the user is encouraged to adopt a more integrated approach, where
general information is carried on lower-level faces in addition to level-specific
information.

C5.4.4.1 Coverage Components

VRF provides a variety of mechanisms for storing dq information within coverages,
including attribute tables, standard data quality tables, and optional user-defined relational
tables. The mechanisms employed vary depending primarily upon the types of information
being stored, rather than the VRF level at which it will reside.

Data quality coverage attribute tables offer the highest degree of flexibility in storing dq
information, since users can design their own table formats and specifically code those
components that vary spatially across the data set. Standard dq tables (Table C-52) are
particularly useful for data sets where characteristics change radically (with respect to
source) from one area to another. In this application, data quality tables are stored as
multiple records, with each complete dq table record corresponding to a face. Within this
context, it may be particularly appropriate for data producers to implement subsets or
supersets of the standard dq table. Additional relational tables are useful in normalizing
complex data, a technique that is particularly helpful when addressing thematically based
variations in dq information (clause C5.4.4.2.2 of this appendix). Finally, text information
is useful for describing phenomena without well-defined spatial extents or for annotating
special conditions that do not occur with sufficient frequency to justify creating attribute
fields to describe them.

C5.4.4.2 Coverage Examples

The following clauses provide examples of how dq coverages may be designed under a
variety of conditions. The user is encouraged to adopt these approaches when appropriate
and to modify them when necessary.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 5 - Data Quality

C5 - 4

Whenever possible, the producer should use coverage level descriptive tables to document
the strategy employed in designing and developing dq coverages for a database.

C5.4.4.2.1 Shared Regions and Common Attributes

 The most simple dq coverage is one where spatial variation of dq information is shared by
all coverages within a library, and dq attributes are well defined. Recognizing that some
nonstandard dq information may be associated with certain regions, simple relational
tables with fields keyed to coverage identifiers can be constructed (Figure C5-1). Line
feature attributes may also be stored in a separate table.

DATA QUALITY COVERAGE

2

1

5

7

6

4

3

3

Faces within a
DQ coverage

2

id date source reliability

dq.aft

1
2

6/78
7/83

ONC
ONC

Good
Fair

fac_id

2
3

id

1

dq.aft_id

2

coverage

HYNET

 comments

Some contours
are missing

dq.com

Related table
for other
coverage comments

Figure C5-1 Data Quality Coverage Design-1

C5.4.4.2.2 Coverage-Specific Information

Clause C5.4.4.2.1 describes the basic constructs for describing characteristics of any data
set with common spatial components to the reliability information. However, in some
cases, the data producer may wish to describe characteristics within a single coverage,
where quality information has spatial extents that vary from coverage to coverage. Figure
C5-2 describes a scenario for organizing information under these conditions. The basic
approach is to develop a single integrated coverage where the smallest faces are the
product of the intersection of the various coverage-based data.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 5 - Data Quality

C5 - 5

Coverages organized in this manner are relatively easy to maintain, particularly for
selective updating where new faces affect more than one primary data coverage. An
alternative approach would be to maintain a series of separate coverages.

C5.4.5 Conclusions

VRF provides a number of options for encoding data quality information. The information
itself can be encoded at any level within the VRF structure depending upon its basic
thematic and spatial characteristics. VRF data producers are encouraged to make use of
the data quality table whenever possible. In instances where dq characteristics vary
spatially, the use of data quality coverages is strongly recommended.

Land use data
quality coverage
 Elevation data

quality coverage
 Drainage data

quality coverage

Overlay procedure

dq_all

2 3 4
6

7 5

8

id

1
2
3
4
5
6
7

fac_id

 2
 3
 4
 5
 6
 7
 8

land_
date
6/78
7/78
7/78
7/78
7/78
6/78
6/78

land_
source
ONC
ONC
ONC
ONC
ONC
ONC
ONC

land_
reliab.
Good
Fair
Fair
Fair
Fair
Good
Good

drn_
date
6/78
6/78
8/81
8/81
6/78
6/78
8/81

drn_
source
ONC
ONC
Photo
Photo
ONC
ONC
Photo

drn_
reliab
Good
Good
High
High
Good
Good
High

elev_
date
8/80
8/80
8/80
9/78
9/78
9/78
9/78

elev_
source
JNC
JNC
JNC
ONC
ONC
ONC
ONC

elev_
reliab.
Good
Good
Good
Good
Good
Good
Good

dq_all.aft

Figure C5-2 Data Quality Coverage Design-2

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 5 - Data Quality

C5 - 6

[This page intentionally left blank]

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 6 - Spatial Indexing

C6 - 1

Appendix C6 - Spatial Indexing

C6.1 GENERAL

This appendix provides information and discussion concerning spatial indexes in a VRF
database.

C6.2 APPLICABLE DOCUMENTS

This clause is not applicable to this appendix.

C6.3 DEFINITIONS

For purposes of this appendix, the definitions of Part 2 clause 4.1 of the main document
shall apply.

C6.4 GENERAL INFORMATION

C6.4.1 Introduction

Spatial queries are queries in which the user points at a specific position on a display
device containing a graphic representation of the data and asks (for example) "What is this
line?" In order to answer the spatial query, any software that conducts a spatial query on a
VRF database must search the edge primitive table for an exact match with "this line."
Without a spatial index, the software would have to search every vertex of every edge
sequentially for the correct response.

The purpose of a spatial index is to improve the speed with which software can retrieve a
specific set of row ids from a primitive table. If the database contains spatial indexes, the
software, when given a spatial query like, "What are the features within this bounding
region?" can quickly retrieve the primitives that match the query. For each primitive (face,
edge, entity node, connected node, and text), there can exist a spatial index file: fsi, esi,
nsi, csi, or tsi (see clause C.2.4.2).

C6.4.2 Categories of Spatial Decomposition

The spatial index is the second of four categories of spatial decomposition of a VRF
database. The other three are the tile directory, the minimum bounding rectangle of the
edge and face primitives, and the primitive coordinates. All four categories of spatial
decomposition are described below.

C6.4.2.1 Tile Directory

Tiles in an implementation of VRF maintain spatially distributed primitives in separate
directories. Thus, software developed for a tiled VRF database can search for data in only
the relevant tile after the appropriate tile has been identified.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 6 - Spatial Indexing

C6 - 2

C6.4.2.2 Spatial Index

The second step in a typical software query is to use the appropriate index file (if one has
been created within the database design). It is recommended that spatial index files
associated with the primitives be created for every product implementation of VRF.
Spatial indexes are discussed further below.

C6.4.2.3 Minimum Bounding Rectangle (MBR)

VRF requires that face and edge primitives have associated bounding rectangle table
files—FBR and EBR. These tables allow the rapid retrieval of the primitives' spatial
extent and are used by the software after the spatial index routine generates the primitive
ids for the current spatial query. The bounding rectangle coordinates are typically used by
the software to check the validity of the primitive ids in satisfying the query.

C6.4.2.4 Primitive Coordinates

It is necessary for software to exhaustively check nodes and text primitives for satisfaction
of a spatial query, since these primitives do not have associated minimum bounding
rectangles. The coordinates of the primitive are thus used to ensure the accurate retrieval
of primitive ids output from the spatial index.

C6.4.3 VRF Spatial Index File

The spatial index file internal structure in VRF is based on an adaptive grid binary tree.
This method is powerful because it can handle all types of spatial queries (point, line, and
area). The input primitives are broken down into a grid-based binary tree. At each cell (of
the tree) there is a list of primitive MBRs and a list of the primitive ids that are found at
this level of the tree.

The tree is created by storing primitive ids at a cell of the tree. "Bucket size" is the number
used to determine when to split a cell and is defined by the product specification. A
typical bucket size is eight (8). If the cell fills to the bucket size, then the cell is split into
right and left (or top and bottom) children of the cell. The primitive ids are then
distributed down into either child depending on the primitive MBRs. Only if a primitive
MBR intersects the adjoining child's cell, will the primitive id remain in the parent cell.
Since primitives cannot be split between two cells, the number of primitives stored in a cell
may exceed the bucket size. The process of splitting cells and distributing primitives based
on each primitive's MBR and the bucket size continues until no cell requires splitting or the
subdivision process reaches single dimensioned cells (max and min x, y are equal). See
C6.4.3.2 below for further detail on the spatial index coordinate system. Product
Specifications may limit the number cells in the grid-based binary tree for performance
reasons (see C6.4.4.1)

When examined spatially, the spatial index divides a tile into subelements (the cells of the
tree); Figure C6-1. Each split results in dividing the parent cell into half. The first split is
into right and left halves, with the left half x-axis ranging from 0 to 127 and the right half
x-axis ranging from 128 to 255. The next split is into top and bottom halves, with the

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 6 - Spatial Indexing

C6 - 3

bottom half y-axis ranging from 0 to 127 and the top half y-axis ranging from 128 to 255.
Splits then continue, left/right and top/bottom, until the tree is complete.

The actual format of the spatial index file consists of the following:

a. A header containing the number of primitives, the minimum bounding
rectangle of the entire spatial extent of the tree, and the number of cells in
the tree. Note that, in tiled coverages, the MBR of the entire spatial extent
of the tree will coincide with the tile boundary in topology level three
coverages for face spatial indices (fsi) edge spatial indices (esi), and
connected node spatial indices (csi), and text spatial indices (tsi). In
untiled topology level three coverages, the entire spatial extent of the tree
will coincide with the coverage extent. However, there is no reason to
force the tile boundary as the spatial extent of the grid-based binary tree
for entity node spatial indices (nsi) or for coverages with topology levels
less than three. In fact, using the primitives MBR as the spatial extent of
the tree rather than the tile boundary provides for a more efficient spatial
index. Although the example spatial index described in this Appendix is
for a tiled coverage, the concepts would apply to an untiled coverage as
well.

b. A bin array of the tree. Each bin contains two items. A beginning location
(offset from the end of the BIN Array Record) for the cell's data and the
number of primitives in the cell. All intermediate cells are listed, even if
empty. The offset for an empty cell equals zero. The last entry in the bin
array record is always a populated cell. The final level of the tree is not
forced to be balanced by creating empty cells.

c. Data records for each primitive in the tree. There is one record for each
primitive in the tree. Each record contains four 1-byte integers defining
the MBR for a primitive and that primitive's id.

C6.4.3.1 Tree Navigation

For any cell, the cell from which it was generated is the integer value obtained by dividing
by two. Thus, cell 3 points back to cell 1 [INT(3/2)], as does cell 2.

New cells created by splitting are numbered by multiplying the current cell by two and
adding one for the second new cell. Thus, cell 2 becomes cells 4 and 5, and cell 3 becomes
cells 6 and 7.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 6 - Spatial Indexing

C6 - 4

C6.4.3.2 Spatial Index Coordinate System

The coordinate system for the spatial index is based upon 1-byte integers, so a primitive's
MBR must be converted to the spatial index coordinate system. All coordinates are
relative to the southwest corner of the tile or of the MBR of the data extent for the
primitive type, and will range from 0 to 255. The minimum X and Y axis coordinate for
each cell will be zero (0) or an even integer. The maximum X and Y axis coordinate for
each cell will be an odd integer. The only exception to this rule is at level 16, where x-min
= x-max and y-min = y-max. Therefore, for any level of cell decomposition a single
integer value will fall in only one cell.

There is no single-line boundary between cells. The number of cell dimensions at each
decomposition level are shown below.

Table C6-0A Cell Decomposition Levels

Decomposition Level Bins at Level Total bins in
Index

 Subdivision Cell X, Y
Dimension

Level 0 1 1 No partition 256 X 256
Level 1 2 3 Vertically 128 X 256
Level 2 4 7 Horizontally 128 X 128
Level 3 8 15 Vertically 64 X 128
Level 4 16 31 Horizontally 64 X 64
Level 5 32 63 Vertically 32 X 64
Level 6 64 127 Horizontally 32 X 32
Level 7 128 255 Vertically 16 X 32
Level 8 256 511 Horizontally 16 X 16
Level 9 512 1023 Vertically 8 X 16
Level 10 1024 2047 Horizontally 8 X 8
Level 11 2048 4095 Vertically 4 X 8
Level 12 4096 8191 Horizontally 4 X 4
Level 13 8192 16383 Vertically 2 X 4
Level 14 16384 32767 Horizontally 2 X 2
Level 15 32768 65535 Vertically 1 X 2
Level 16 65536 131071 Horizontally 1 X 1*

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 6 - Spatial Indexing

C6 - 5

* This represents a single dimensioned cell with the min x,y equal to the max x,y.

Cell 1

Cell 2Cell 3

Cell 4Cell 5Cell 6Cell 7

Cell 8Cell 9Cell 10Cell 11Cell 12Cell 13Cell 14Cell 15

0
2550

255

0

255

127 128

255

0
0

255

0

127

0
0

127

127 1270
128 128

128128

255 255

255255

Figure C6-1 Spatial Index Cell Decomposition

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 6 - Spatial Indexing

C6 - 6

C6.4.4 Examples of Spatial Index Creation

Table C6-1 Minimum and Maximum Coordinates for 19 Primitives in a Tile. Universe
is primitive number 1.

Primitive ids x1 (deg) y1 (deg) x2 (deg) y2 (deg)
1 Null Null Null Null
2 -5.00 54.63 -3.57 55.00
3 -5.00 52.00 -2.74 55.00
4 -5.00 54.91 -4.99 54.94
5 -5.00 54.76 -4.99 54.77
6 -4.80 54.06 -4.31 54.42
7 -3.28 54.05 -3.17 54.15
8 -0.71 53.54 0 53.74
9 -0.57 53.68 -0.53 53.69
10 -4.60 53.13 -4.05 53.43
11 -4.71 53.24 -4.56 53.33
12 -4.80 52.75 -4.78 52.77
13 -5.00 50.53 -2.35 51.82
14 -4.71 51.63 -4.68 51.65
15 -4.68 51.16 -4.65 51.20
16 -1.03 50.78 -0.95 50.84
17 -1.59 50.58 -1.08 50.77
18 -1.99 50.69 -1.96 50.70
19 -5.00 50.16 -4.99 50.17

Table C6-1 is a listing of the minimum (x1, y1) and maximum (x2, y2) coordinates of the
MBRs of 19 face primitives. The coordinate values in Table C6-1 are all in degrees. The
primitives are all located within a 5-by-5-degree tile that has an MBR of (-5, 50), (0, 55).
The MBR coordinates can be converted to the spatial index coordinate system as follows:

For minimum (x1,y1) and maximum (x2,y2), each new coordinate is obtained from the
integer truncation of

255*(Original coordinate - minimum)/(maximum - minimum), which must be in
the range 0 to 255.

In our example with MBR (-5,50), (0,55), each new coordinate is given by

y = 255*(Latitude - 50)/(55 - 50) truncated to an integer

and

x = 255*(Longitude + 5)/(0 + 5) truncated to an integer

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 6 - Spatial Indexing

C6 - 7

The results of this conversion are listed in Table C6-2.

Table C6-2 Minimum and Maximum Spatial Index Coordinates

Primitive
ids x1 y1 x2 y2
2 0 236 72 255
3 0 102 115 255
4 0 250 0 251
5 0 242 0 243
6 10 207 35 225
7 87 206 93 211
8 218 180 255 190
9 225 187 227 188

10 20 159 48 174
11 14 165 22 169
12 9 140 11 141
13 0 27 135 92
14 14 83 16 84
15 16 59 17 61
16 202 39 206 42
17 173 29 199 39
18 153 35 155 35
19 0 8 0 8

Note: Since face 1 (universe face) is a topological artifact (i.e. no outer ring), the MBR in
normalized coordinates cannot be calculated. Therefore face 1 is not included in the bin data
record portion of the index. Further, no fsi is built for a face table containing only the universe
face.

When coordinates are stored as short floating point (data types C and Z), different
computer systems can generate slightly different values due to conversion to long floating
point for normalization computations. When this occurs very close to a cell break, it can
cause the primitive MBR normalized coordinates to fall in an incorrect cell. To alleviate
this problem, the following process should be followed for computing normalized
coordinate for any short floating point coordinate value: after conversion to a long floating
point, truncate the coordinate value following the third (3rd) decimal place before
computing the normalized coordinate.

If the MBRs of each primitive are plotted, they appear as shown in Figure C6-2. In Figure
C6-3, dividing lines have been added to Figure C6-2 to show that primitive 13 is present in
both the left and right halves of the tile, and that primitive 3 is present in both the top and
bottom halves of the tile.

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 6 - Spatial Indexing

C6 - 8

0 255

0

255

9

8

1617
18

13

19

15

14

12

1011

6 7

3
2

5

4

1
(the

universe)

Figure C6-2 Location of MBRs in Tile

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 6 - Spatial Indexing

C6 - 9

Figure C6-3 Tile Content Divided in Four Quarters

C6.4.4.1 Example of Tree Creation

The bucket size for this example is set at eight. If a parent cell contains nine or more
primitives that can be propagated to the next level, the parent splits into two children. The
first split of the tile puts primitives 8, 9, 16, 17, and 18 into cell 2 and places primitive 3
into cell 3 (Figure C6-4). Primitive 13 must be held in cell 1 (Figure C6-5) because neither
of the split cells contains the entire MBR for primitive 13.

0

25 5

12

1011

6 7

3

2

5

4

12 7

12 8

0

19

15

14

25 5

9

8

1
(th e

un iv e rs e)

12 8

1617
18

13

12 7

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 6 - Spatial Indexing

C6 - 10

Cell 3 (before the split into cells 6 and 7) contains twelve primitives: 2, 3, 4, 5, 6, 7, 10,
11, 12, 14, 15, and 19.

0 255

0

255

9

8

1617
18

3

127 128

Cell 3 Cell 2
Figure C6-4 First Cell Split

Since this exceeds the defined bucket size, cell 3 is split (Figure C6-4). The MBR of
primitive 3 will cross the boundary of cells 6 and 7. Therefore it must remain in cell 3.
Eleven primitives remain. Based on each primitive's MBR, the contents of the new cells
are: primitives 2, 4, 5, 6, 7, 10, 11, and 12 in cell 6 and primitives 14, 15, and 19 in cell 7.
Note that no primitives are allocated to cells 4 and 5, since all five primitives on the right
half of the tile could be held in cell 2. The five primitives do not 'over-flow' the defined
bucket size. All of the primitives in this example have now been allocated to the tree.

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 6 - Spatial Indexing

C6 - 11

In theory, the process of splitting cells and distributing primitives based on each primitive's
MBR and the bucket size continues until no cell requires splitting or the subdivision
process reaches the bottom level of the grid-based binary tree (where each cell is 1x1 in
normalized coordinates). This implies a grid-based binary tree with 17 levels and 131,071
cells (217 - 1). As noted in C6.4.3, however, Product Specifications may limit the number
of cells allowed in the grid-based binary tree for performance reasons.

The spatial index that results for this example is shown in Table C6-3.

0 255

0

255

13

Cell 1

Figure C6-5 Content of Cell 1

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 6 - Spatial Indexing

C6 - 12

0 255

0

255

19

15

14

12

1011

6 7

2

5

4

127 128

127

128

Cell 6

Cell 7

Cell 4
(empty)

Cell 5
(empty)

Figure C6-6 Second Cell Split

DIGEST Part 2
Edition 2.1, September 2000

Annex C Appendix 6 - Spatial Indexing

C6 - 13

Table C6-3 Example of Spatial Index

Header:
Number of primitives: 18
MBR: -5.00, 50.00, 0.00, 55.00
Number of cells: 7

Bin Array Record:

cell
(information not in
actual spatial index)

offset primitive
count

1 0 1
2 8 5
3 48 1
4 0 0
5 0 0
6 56 8
7 120 3

Bin Data Record:

Record
Number

Offset
Address

x1 y1 x2 y2 Primitive ids

Cell 1
1 0 0 26 135 93 13

Cell 2
2 8 153 35 155 35 18
3 16 173 29 199 39 17
4 24 202 39 206 42 16
5 32 226 187 227 188 9
6 40 218 180 255 190 8

Cell 3
7 48 0 102 115 255 3

Cell 6
8 56 87 206 93 211 7
9 64 10 206 35 225 6

10 72 0 242 0 243 5
11 80 0 250 0 252 4
12 88 0 236 72 255 2
13 96 20 159 48 175 10
14 104 14 165 22 169 11
15 112 9 140 11 141 12

Cell 7
16 120 0 8 0 8 19
17 128 16 59 17 61 15
18 136 14 83 16 84 14

DIGEST Part 2
Edition 2.1, September 2000
Annex C Appendix 6 - Spatial Indexing

C6 - 14

C6.4.5 Spatial Query

A spatial index can support a spatial query in several ways. For node primitives, software
may require the point to be within a specified distance of a pixel designated during the
query process, or within a box generated during the query process. For an edge primitive,
the software may specify that candidate edges are to be within some specified
perpendicular distance of the query pixel or have MBRs that intersect a query box. For a
face primitive, the software may define the candidate edges as having MBRs that intersect
a query box, be fully contained within the query MBR, or be determined by solving the
"point-in-polygon" puzzle. In any case, the spatial index forms the starting point for the
database search. It works as follows:

a. The user designates a query point (pixel).

b. The software converts the query point into the spatial index coordinate
system ((0,0) to (255,255)).

c. The software tests all features within the top level cell, if any, to determine
if these features qualify for the query response.

d. The software calculates the next smaller cell containing the query point.

e. The software repeats the test (if necessary) and continues to decrease cell
size until no more records exist.

C6.4.6 Spatial Query Using the Sample Tree

a. The user designates a query point and the software determines the
normalized coordinates at (192, 32).

b. Beginning at the root of the tree, the software goes to cell 1 and finds face
13.

c. The software checks the MBR of face 13 to determine if it includes the
query point.

d. Since face 13 does not include the query point the software calculates the
children of cell 1, which are cells 2 and 3. Cell 3 cannot contain the query
point, so cell 2 is examined. Faces 8, 9, 16, 17, and 18 are found.

e. The software checks the MBR of these faces to determine if they include
the query point.

f. The software reports the query result which is face 17

	Annex C - Contents	page
	C.1€€€GENERAL REQUIREMENTS
	C.1.1€€€General
	C.1.2€€€Relationship Between VRF and Specific Products
	C.1.3€€€VRF Hierarchy
	C.2€€€DETAILED REQUIREMENTS
	C.2.1€€€General
	C.2.2€€€VRF Data Model
	C.2.2.1€€€Data Organization
	C.2.2.1.1€€€Directory
	C.2.2.1.2€€€Tables
	C.2.2.1.3€€€VRF Table Components
	C.2.2.1.4€€€Indexes
	C.2.2.1.5€€€Narrative Tables
	C.2.2.1.6€€€Attribute Tables

	C.2.2.2€€€VRF Data Model Components
	C.2.2.2.1€€€Primitives
	C.2.2.2.1.1€€€Nodes
	C.2.2.2.1.2€€€Edges
	C.2.2.2.1.3€€€Faces
	C.2.2.2.1.4€€€Text

	C.2.2.2.2€€€Feature Classes
	C.2.2.2.2.1€€€Feature Definition
	C.2.2.2.2.2€€€Feature Table Joins
	C.2.2.2.2.3€€€Feature Class Types
	C.2.2.2.2.4€€€Constructing Feature Classes

	C.2.2.2.3€€€Coverage
	C.2.2.2.3.1€€€VRF Topology
	C.2.2.2.3.2	Value Description Tables
	C.2.2.2.3.3	Tiled Coverages
	C.2.2.2.3.4€€€Cross-Tile Keys

	C.2.2.2.4€€€Library
	C.2.2.2.4.1€€€Tile Reference Coverage (tileref)
	C.2.2.2.4.2€€€Library Attributes
	C.2.2.2.4.3€€€Library Coordinate System
	C.2.2.2.4.4€€€Library Reference Coverage (libref)
	C.2.2.2.4.5€€€Data Quality Reference Coverage
	C.2.2.2.4.6€€€Names Reference Coverage (gazette)

	C.2.2.2.5€€€Database

	C.2.2.3 €€€Data Quality
	C.2.2.3.1€€€Types of Data Quality Information
	C.2.2.3.2€€€Data Quality Encoding

	C.2.3€€€Implementation
	C.2.3.1€€€General Implementation Information
	C.2.3.1.1€€€Table Definitions
	C.2.3.1.2€€€Reserved Table Names and Extensions

	C.2.3.2€€€Primitives
	C.2.3.2.1€€€Node Primitives
	C.2.3.2.2€€€Edge Primitive
	C.2.3.2.3€€€Face Primitive
	C.2.3.2.4€€€Text Primitive
	C.2.3.2.5€€€Minimum Bounding Rectangle Table
	C.2.3.2.6€€€Z-value Differences at Edge Intersections

	C.2.3.3€€€Feature Class
	C.2.3.3.1€€€Feature Tables
	C.2.3.3.2€€€Feature Join Tables
	C.2.3.3.3€€€Feature-to-Primitive Relations on Tiled Coverages
	C.2.3.3.4€€€Feature-to-Feature Connectivity
	C.2.3.3.5€€€Feature Stacked-on/Stacked-under
	C.2.3.3.6€€€Multi-Value Attributes

	C.2.3.4 €€€Coverage
	C.2.3.4.1€€€Coverage Relationships
	C.2.3.4.2 €€€Feature Class Schema Table
	C.2.3.4.3€€€Value Description Table
	C.2.3.4.4 Coded Values

	C.2.3.5€€€VRF Library
	C.2.3.5.1€€€Library Header Table
	C.2.3.5.2€€€Geographic Reference Table
	C.2.3.5.3€€€Coverage Attribute Table
	C.2.3.5.4€€€Tile Reference Coverage
	C.2.3.5.4.1€€€Tile Attributes

	C.2.3.5.5€€€Registration Point Table
	C.2.3.5.6 Diagnostic Point Table

	C.2.3.6 Database
	C.2.3.6.1 Library Attribute Table
	C.2.3.6.2 Database Header Table

	C.2.3.7€€€Data Quality
	C.2.3.8€€€Narrative Table
	C.2.3.9€€€Names Reference Coverage

	C.2.4€€€VRF Encapsulation
	C.2.4.1€€€Table Definition
	C.2.4.1.1€€€Header
	C.2.4.1.2€€€Record List
	C.2.4.1.3 €€€Variable-length Index File

	C.2.4.2€€€Spatial Index Files
	C.2.4.3€€€Thematic Index Files
	C.2.4.3.1€€€Feature Index

	C.2.4.4€€€Allowable Field Types
	C.2.4.5€€€Naming Conventions
	C.2.4.6€€€Triplet id Field Type

	C.2.5€€€Data Syntax Requirements
	C.2.5.1€€€Integer Numbers
	C.2.5.2€€€Real Numbers
	C.2.5.3€€€Date and Time Syntax
	C.2.5.4€€€Text Syntax
	C.2.5.5€€€Coordinate Syntax
	C.2.5.6€€€Coordinate Strings

	C.3€€€Notes
	C.3.1€€€Intended Use

	Draft_DIGEST_2-1_AnnexC_Appendices.pdf
	C1.1€€€GENERAL
	C1.2€€€APPLICABLE DOCUMENTS
	C1.3€€€DEFINITIONS
	C1.4€€€GENERAL INFORMATION
	C1.4.1€€€Introduction
	C1.4.2€€€Data Model Concepts
	C1.4.2.1€€€Data Objects
	C1.4.2.2€€€Data Operations
	C1.4.2.3€€€Data Rules
	C1.4.2.4€€€Database Purpose

	C1.4.3€€€Relational Data Model Concepts
	C1.4.3.1€€€Relational Data Objects
	C1.4.3.2€€€Relational Data Operations
	C1.4.3.3€€€Relational Data Rules

	C1.4.4€€€Plane Topology Model Concepts
	C1.4.4.1€€€Topological Objects
	C1.4.4.2€€€Topological Operations
	C1.4.4.3€€€Topological Rules
	C1.4.4.4€€€The VRF Georelational Data Model

	C2.pdf
	C2.1€€€GENERAL
	C2.2€€€APPLICABLE DOCUMENTS
	C2.3€€€DEFINITIONS
	C2.4€€€GENERAL INFORMATION
	C2.4.1€€€Winged-Edge Topology
	C2.4.2€€€Components of a Winged Edge
	C2.4.2.1 Inner and Outer Rings

	C2.4.3€€€Winged-Edge Algorithm
	C2.4.4 Cross-Tile Topology

	C3.pdf
	C3.1€€€GENERAL
	C3.2€€€APPLICABLE DOCUMENTS
	C3.3€€€DEFINITIONS
	C3.4€€€GENERAL INFORMATION
	C3.4.1€€€Overview
	C3.4.1.1€€€Software Performance
	C3.4.1.2€€€Tiled Coverages
	C3.4.1.3€€€Indexing
	C3.4.1.3.1€€€Thematic Indexes
	C3.4.1.3.2€€€Spatial Indexes
	C3.4.1.3.3€€€Feature Indexes

	C3.4.2€€Feature and Primitive Table Relationships
	C3.4.3€€One-to-One Relationships
	C3.4.3.1€€€1:1 Feature Class in an Untiled Coverage
	C3.4.3.2€€€1:1 Feature Class in a Tiled Coverage
	C3.4.3.3€€€1:1 Feature Class in a Tiled Coverage with Thematic Indexes
	C3.4.3.4€€€1:1 Feature Classes in a Tiled Coverage with feature_id Pointers in the Primitive Tables
	C3.4.3.5€€€1:1 Feature Classes in a Tiled Coverage with feature_id Pointers in the Primitive Tables and Thematic Indexes
	C3.4.3.6€€€1:1 Feature Classes in a Tiled Coverage with Feature Indexes

	C3.4.4€€€One-to-Many Relationships
	C3.4.4.1 1:N Feature Class in an Untiled Coverage Using Join Tables
	C3.4.4.2€€€1:N Feature Class in an Untiled Coverage with a Thematic Index
	C3.4.4.3€€€1:N Feature Class in a Tiled Coverage
	C3.4.4.4€€€Tiled 1:N Coverages with feature_id Pointers in the Primitive Tables
	C3.4.4.5€€€1:N Feature Class in a Tiled Coverage with feature_id Pointers in the Primitive Tables and Thematic Indexes
	C3.4.4.6€€€1:N Feature Class in a Tiled Coverage with Feature Indexes and Thematic Indexes

	C3.4.5€€€Many-to-One Relationships
	C3.4.6€€€Many-to-Many Relationship
	C3.4.7€€€Complex Feature Relationships
	C3.4.7.1 One Complex Feature Composed of Simple Features from Multiple Feature Classes
	C3.4.7.2€€€Many Complex, Many Simple Features
	C3.4.7.3 An Example of a Coverage with Simple and Complex Features

	C4.pdf
	C4.1€€€GENERAL
	C4.2€€€APPLICABLE DOCUMENTS
	C4.3€€€DEFINITIONS
	C4.4€€GENERAL INFORMATION
	C4.4.1€€Rationale
	C4.4.2€€Cross-Tile Topological Primitives
	C4.4.3€€Feature Classes
	C4.4.4€€Tile Reference Coverage

	C5.pdf
	C5.1€€€GENERAL
	C5.2€€€APPLICABLE DOCUMENTS
	C5.3€€€DEFINITIONS
	C5.4€€€GENERAL INFORMATION
	C5.4.1€€VRF Data Quality
	C5.4.2€€General Concepts
	C5.4.3€€Data Quality Tables
	C5.4.3.1€€Lineage
	C5.4.3.2€€Placement of DQ Table

	C5.4.4€€Data Quality Coverages
	C5.4.4.1€€Coverage Components
	C5.4.4.2€€Coverage Examples
	C5.4.4.2.1€€Shared Regions and Common Attributes
	C5.4.4.2.2 Coverage-Specific Information

	C5.4.5€€Conclusions

	C6.pdf
	C6.1€€€GENERAL
	C6.2€€€APPLICABLE DOCUMENTS
	C6.3€€€DEFINITIONS
	C6.4€€€GENERAL INFORMATION
	C6.4.1€€Introduction
	C6.4.2€€Categories of Spatial Decomposition
	C6.4.2.1€€Tile Directory
	C6.4.2.2€€Spatial Index
	C6.4.2.3€€Minimum Bounding Rectangle (MBR)
	C6.4.2.4€€Primitive Coordinates

	C6.4.3€€VRF Spatial Index File
	C6.4.3.1€€Tree Navigation
	C6.4.3.2€€Spatial Index Coordinate System

	C6.4.4€€Examples of Spatial Index Creation
	C6.4.4.1€€Example of Tree Creation

	C6.4.5€€Spatial Query
	C6.4.6€€Spatial Query Using the Sample Tree

