

The Digital Geographic Information Exchange Standard (DIGEST)

Part 3 CODES and PARAMETERS

> Edition 2.1 September 2000

Produced and issued by the Digital Geographic Information Working Group (DGIWG)

DIGEST Part 3 Codes and Parameters

Part 3 - Contents

part-clause-page

	OTICE TO USERS/RECORD OF AMENDMENTS	
		1,
1	SCOPE, PURPOSE, AND FIELD OF APPLICATION	1-1
2	CONFORMANCE	
	REFERENCES	
	TERMINOLOGY	
5	DATA TYPES AND CODE TABLES	5-1
	5.1 Specification of Data Types	5-1
	5.1.1 Single Data Entities	
	5.1.1.1 ISO 8211 Single Data Entities	
	5.1.1.2 ISO 8824 Single Data Entities	5-7
	5.1.1.3 VRF Relational Tables Single Data Entities	5-8
	5.1.1.4 IIF Single Data Entities	
	5.1.2 Coordinate Strings	
	5.1.2.1 ISO 8211 Coordinate Strings	
	5.1.2.2 ISO 8824/5 Coordinate Strings	5-11
	5.1.2.3 VRF Relational Tables Coordinate Strings	
	5.1.2.4 IIF Coordinate Strings	
	5.1.3 Other Data Entities	5-13
	5.1.3.1 ISO 8211 Other Data Entities	5-13
	5.1.3.2 ISO 8824/5 Other Data Entities	5-13
	5.1.3.3 VRF Relational Tables Other Data Entities	5-14
	5.1.3.4 IIF Other Data Entities	5-14
	5.1.4 Textual Information	5-15
	5.1.5 Text Syntax	5-16
	5.1.5.1 ISO 8211 Text Syntax	5-16
	5.1.5.2 ISO 8824/5 Text Syntax	5-18
	5.1.5.3 VRF Relational Tables Text Syntax	5-18
	5.1.5.4 IIF Text Syntax 3-	5-19
	5.2 Code Tables	5-20
	5.2.1 Alphabets and Repertoire	5-22
	5.2.1.1 Level 0 Text Repertoire	5-22
	5.2.1.2 Level 1 Text Repertoire 3-	5-23
	5.2.1.3 Level 3 Text Repertoire 3-	
	5.2.2 Coding of Character Sets	
	5.2.3 Lexical Fields	5-27

6	GEODETIC CODES AND PARAMETERS	3-6-1
	6.1 Ellipsoid Codes	3-6-1
	6.2 Datum Codes	3-6-4
	6.3 Projection Codes and Parameters	
	6.4 Grid Codes	
7	UNITS OF MEASURE CODES	3-7-1
8	USE OF CIE VALUES	3-8-1
9	DIGITAL GEOGRAPHIC DATA VOLUME TRANSMITTAL	
	FORM	3-9-1
	Part 1 – National Organizations	3-9-1
	Part 2 – Data Exchange Specifications	
	Part 3 - Additional Information	3-9-2
10) BIBLIOGRAPHY	

Part 3 - Figures

part-clause-page

6-1	Concept Relationships	3-6-1
8-1	CIE Chromaticity Chart	3-8-2

Part 3 - Tables

part-clause-page

5-1	Data Types	3-5-2
5-2	Type Byte Definitions	
5-3	Latin Alphabet Primary Code Table (ASCII)	
5-4	Latin Alphabet 1 Code Table; ISO 8859-1	
5-5	Character Set Repertoire of ISO 10646 Base Multilingual	
	Plane	
5-6	The Coding of ISO 8211 Terminators	
5-7	Table of General-Text Fields Defined in DIGEST	
6-1	Ellipsoid Codes	3-6-2
6-2	Geodetic Datum Codes	3-6-5
6-3	Codes for Vertical Datums	
6-4	Codes for Sounding Datums	
6-5	Projection Codes and Parameters	
6-6	Grid Codes	
7-1	Units of Measure Codes	
8-1	Representations of Colour in CIE System	3-8-1

NOTICE TO USERS

Refer to the Notice to Users/Record of Amendments in DIGEST Part 1.

RECORD OF AMENDMENTS

NUMBER	DATE	ENTERED BY	REMARKS
	2		

FOREWORD

Refer to the Foreword in DIGEST Part 1.

1 SCOPE, PURPOSE, AND FIELD OF APPLICATION

Refer to the Scope, Purpose, and Field of Application in DIGEST Part 1.

2 CONFORMANCE

Refer to the Conformance in DIGEST Part 1.

3 REFERENCES

Refer to the References in DIGEST Part 1.

4 TERMINOLOGY

Refer to the Terminology in DIGEST Part 1.

5 DATA TYPES AND CODE TABLES

5.1 Specification of Data Types

The fundamental building blocks out of which all forms of DIGEST data exchange are composed are primitive data elements consisting of numbers, coordinate pairs or triplets, text strings and special items such as a date. Although each of the encapsulations of DIGEST encode these data elements in different ways, the basic elements remain constant. That is, the range of values for numeric entities and repertoire of valid text characters are common to the various encapsulations of DIGEST. Different encoding techniques are appropriate to the various encapsulations of DIGEST for efficiency and structural reasons as well as for alignment with the underlying encapsulation specifications.

The specification below defines each of the data items as primitive elements for the ISO 8211, ISO 8824/5 (ASN.1), VRF and IIF representations of DIGEST (Annexes A, B, C and D of Part 2 respectively). These items can be classified into four main groups: single items; coordinate strings; other items such as Triplet ID, Date, etc.; and text. Single items consist of individual occurrences of items of particular types, whereas coordinate strings consist of multiple occurrences of coordinates.

Two types of text strings are required. These are a Basic Text String text (used to encode labels, etc.) and a generalized text format to handle place names and other information including accents and special characters to support information written in any language in the world. The "Basic Text String" data element type would include any string of characters from the ASCII (International Reference Version - IRV alphabet of the ISO 646 standard). The "General Text String" encompasses any characters including accents, diacritical marks, special characters, and any other ISO standardized alphabet. This permits the handling of place names to be described in any language. There exist a number of different world standards for the handling of general text. A graduated common repertoire supporting both direct (multi-byte) and composite (telecommunication oriented) coding is described.

The following table illustrates the various data types and the encoding used in each of the DIGEST encapsulations. All references to Annexes A, B, C or D in this clause refer to DIGEST Part 2.

Note: For the purpose of all DIGEST encapsulations a "byte" is defined to be an 8-bit octet. This applies to interchange of data. Systems may choose to map basic numerical data types to internal structures that may or may not be of equivalent bit length. Developers of systems must be careful to represent special cases, such as the Not A Number (NAN) value to an appropriate internal value, that will be dependent on the internal bit length used on the particular platform.

Туре	Short Description	ISO 8211	ISO 8824/25	VRF	IIF
Single Entities					
Integer Number	a signed Integer Number, the length of the Integer Number is encapsulation and usage dependent. Some encapsulations provide both short (2-byte)(16-bit) and long 4(byte) (32-bit) integer numbers, whereas others provide length integers or integer numbers of a specific number of digits.	I format (arbitrary- length (integer) I n [where n is number of digits] (specific length of digits)	IMPLICIT INTEGER (arbitrary- length integer)	S,1 (Short Integer) 2 byte I,1 (Long Integer) 4 byte	BCS-N integer (composed of digits 0 to 9, + and -) and BCS-N positive integer (composed of digits 0 to 9). Both are BCS-N (Basic Character Set-Numeric - arbitrary- length number) subsets.
Real Number	a signed real (floating point) number consisting of a mantissa and an exponent, the length of the real number is encapsulation and usage dependent. Some encapsulations provide both short (4-byte)(32-bit) and long (8-byte)(64-bit) real numbers, whereas others provide arbitrary length real numbers.	R format (arbitrary- length real) Rn [where n is number of text characters] Rn.m [where n is number of text characters and m is the number after the decimal point.]	Real-Number composed of two arbitrary- length Integers one for mantissa & one for exponent.	F,1 (Short Real) 4 byte R,1 (Long Real) 8 byte	BCS-N (Basic Character Set-Numeric - arbitrary- length real number, composed of digits 0 to 9 and + and - and .) NOTE: No exponential form
Fraction Number	the fraction part of a real number, a number ranging between 0.0 (inclusive) and 1.0 (exclusive) used to represent real numbers normalized to a unity range. Normalized numbers are used for efficiency in some situations.	R format (arbitrary- length real)	Fraction- Number represented as an Integer data field	F,1 (Short Real) 4 byte R,1 (Long Real) 8 byte	(not applicable)

Table 5-1 Data Types

Туре	Short Description	ISO 8211	ISO 8824/25	VRF	IIF
Single Entities					
Bit-Value	a set of bits representing a single bit coded value such as a pixel value	B format (string of bits in a bit- field)	OCTETSTRI NG (string of bits grouped as octets)	(Not Applicable)	Image Bit Field (string of bits in a bit-field)
X,Y Coordinate	a ordered pair of numbers representing an X, Y coordinate pair.	R format (pair of R format elements)	two fraction numbers encoded as an OCTET STRING or an element of a packed differential coordinate string	C,* (two coordinates, short floating point) 8n+4 bytes or B,* (two coordinates, long floating point) 16n+4 bytes	(not applicable)
X,Y,Z Coordinate	a ordered triplet of numbers representing an X, Y,Z coordinate value.	R-format (triplet of R- format elements)	three fraction numbers encoded as an OCTET STRING or an element of a packed differential coordinate string	Z,* (three coordinates, short floating point) 12n+4 bytes or Y,* (three coordinates, long floating point) 24n+4 bytes	(not applicable)
<u>Strings</u> Abs-Coordinate- String	an arbitrary-length string of absolute coordinates	Repeating set of R format	SEQUENCE of Coord [where Coord is defined as an X,Y or X,Y,Z Coordinate built out of fraction numbers]	Relational table columns of short or long real (floating point) numbers, in C, B, Z or Y format.	(not applicable)

DIGEST Part 3

Edition 2.1, September 2000 5 - Data Types

Туре	Short Description	ISO 8211	ISO 8824/25	VRF	IIF
Strings Rel-Coordinate- String	an arbitrary-length string of coordinates, which are described as relative to a Reference Coordinate defining a Local Coordinate System. [see Part 2 clause 10.2]. A Scale factor relates the local coordinate system to the absolute coordinate system. In ISO 8824 the Reference Coordinate and Scale factor are defined by the Local Coordinate System. The string consists of a sub- string length indicator and the string of coordinates with coordinates described in interleaved normalized binary integer form. In VRF the Reference Coordinate and Scale factor are described once for the tile in the TILEREF AREA Feature Table. The length of the coordinate values is implicit in the format types G, H, V or W.	(not applicable)	SEQUENCE (INTEGER, OCTETSTRING)	Relational table columns of short or long integer numbers, in G, H, V or W format. Note: Reference coordinate and scale factor in TILEREF Feature Table.	(not applicable)
Dif-Coordinate- String	an arbitrary-length string of coordinates, which are encoded as relative to the previous coordinate in the string. The initial position is described as a coordinate relative to the Reference Coordinate defining a Local Coordinate System. A Scale factor , defined at the Layer/Coverage level, relates the local coordinate system to the absolute coordinate string contains the initial position of the differential coordinate string, a differential factor, a sub-string length indicator and a string of coordinates. In ISO 8824 the string consists of an initial coordinate followed by a differential factor, a sub-string length indicator and a string of coordinates, with coordinates described in interleaved normalized binary integer form.	(not applicable)	SEQUENCE (Coord, INTEGER, INTEGER, OCTETSTRING)	(not applicable)	(not applicable)
Bit String	an arbitrary-length string of Bit coded values	Repeating set of B format	SEQUENCE (Bit-Value)	(not applicable)	(string of bits in a bit-field)

DIGEST Part 3

Edition 2.1, September 2000 5 - Data Types

Туре	Short Description	ISO 8211	ISO 8824/25	VRF	IIF
<u>Other</u> TripletID	ID Triplet. Used in edge and face primitive tables to provide cross-tile topology and seamless databases	(not applicable)	(not applicable)	K,1 (Triplet ID) 1 to 13 bytes	(not applicable)
Date	defines the local calendar date and time	A(8)	IMPLICIT GENERALI ZED TIME	D,1 (Date and time) 20 bytes	BCS-N positive integer (usage defined at field level)
Null Field	a place holder element of null value (null fields are required in some encapsulations)	(not applicable)	IMPLICIT NULL	X,1 null values are available for single numeric data entities	(not applicable)
<u>Text String</u> Basic-Text	an arbitrary-length string of ASCII data (ASCII is defined by ISO 646)	A format	IMPLICIT- GRAPHIC- STRING	T, n (fixed- length text) n byte fixed table column width	BCS-A (Basic Character Set-Alpha numeric)
General-Text	an arbitrary-length string of text data including accents and special characters from one of three levels of repertoire: Level 0 - Basic ASCII text , (IRV of ISO 646) Level 1 - Extended ASCII (including accents for Western European Latin alphabet based languages, ISO 8859 part 1 Latin Alphabet 1 repertoire) (ASCII+ all Latin alphabet accents) Level 3 - Universal Character Set repertoire UCS-2 implementation level 2 (Base Multilingual plane of ISO 10646) (i.e. including Latin, alphabet, Greek, Cyrillic, Arabic, Chinese, etc.) Note: Level 2 - is obsolete and retained only for compatibility with	A format	IMPLICIT- GRAPHIC- STRING	T,* (variable- length text) *+4 byte text string indirectly referenced T, n (fixed- length text) n byte fixed table column width T,* (variable length text) *+4 byte text string indirectly referenced	Level 0 = BCS-A (Basic Character Set-Alpha numeric) Level 1 = ECS-A (Extended Character Set – Alpha numeric) Level 3 = (not applicable)
	retained only for compatibility with earlier versions of DIGEST.				

Each of the four encapsulations, in ISO 8211, ISO 8824/5, VRF relational tables and IIF, make use of different techniques to identify the data type being used in any particular section of the data set.

The ISO 8211 standard makes use of a data descriptive technique, which facilitates the exchange of files containing data records between systems in a media independent manner. It defines a generalized structure for a wide variety of data types and structures in terms of a Data Descriptive Record (DDR) which specifies the size and position of each data element within a data file. It also provides the means within the DDR for the description of use for the contents of the data fields.

In the ISO 8824/5 implementation the type of an item is determined from the context (Tag Structure) of the syntactic description in ASN.1. Note that the term "IMPLICIT" in the equivalence statements below ensures that double tags are not assigned to these elements. All direct data types (coordinates, topological pointers, etc.) make use of the Integer-Number data type, whereas structural data about the interchange format, such as counters, etc. are expressed in the INTEGER primitive directly.

In the relational table implementation data is encapsulated in terms of tables contained in separate files. Each table contains a header, which defines the data type of each column of the table.

In the IIF implementation data is encapsulated using byte counts to delimit data fields in the format. The data that appears in all header/subheader information fields is represented using the Extended Character Set (ECS) and subsets.

The following sections identify each of the data types as used in the various encapsulations. Certain data types are unique to specific encapsulations. For example the ISO 8824 encapsulation supports a fraction number data type. This is the mantissa part of a real number, and it can be carried efficiently in the equivalent of an integer data field. It is particularly useful for carrying normalized coordinate data. It is used in the ISO 8824 telecommunications oriented encapsulation in order to improve efficiency in telecommunications systems.

Null values for specific data entities are defined along with the data entities.

5.1.1.1 150 6211 5	ingle Data Entities
Integer (I)	ISO 8211 "I" format a signed Integer Number (Implicit point number) of arbitrary size encoded as a string of text characters. The null value is a zero field width.
Integer (I n)	ISO 8211 "I" format a signed Integer Number (Implicit point number) of "n" characters encoded as a string of text characters. The null value is the maximum negative value possible (e.g9999 for an I5 Integer format).
Real (R)	ISO 8211 "R" format a signed Real Number (Explicit point number) of arbitrary size encoded as a string of text characters. The null value is a zero field width.
Real (R n)	ISO 8211 "R" format a signed Real Number (Explicit point number) of "n" characters encoded as a string of text characters. The null value is the maximum negative value possible (e.g9999. for an R6 Real format).

5.1.1 Single Data Entities

5.1.1.1 ISO 8211 Single Data Entities

Real (R n.m)	 ISO 8211 "R" format. a signed Real Number (Explicit point number) of "n" characters with "m" characters after the decimal point. The null value is the maximum negative value possible (e.g9999.99 for an R8.2 Real format).
Fraction Number	(This number form is currently not used in Annex A. Fraction number values will in the future be handled in Integer number fields, as stated above, to handle normalized offset coordinate units.)
Bit (B 8)	ISO 8211 "B" format a set of 8 bits in an ISO 8211 fixed bit field. A string of bits of arbitrary-length corresponding to a pixel value, are padded to fill an integer number of octets. There is no null value.
X,Y Coordinate	(There is no specific X,Y coordinate format in Annex A. Coordinates are handled as a pair of " R " format numbers.) a ordered pair of real numbers representing an X,Y coordinate pair.
X,Y,Z Coordinate	(There is no specific X,Y,Z coordinate format in Annex A. Coordinates are handled as a triplet of " R " format numbers.) a ordered triplet of real numbers representing an X,Y,Z coordinate value.

5.1.1.2 ISO 8824 Single Data Entities

(Note: the following is ISO 8824 ANS.1 code for the identified items)

Integer-Number	::= IMPLICIT INTEGER a signed Integer Number of arbitrary-length. The null value is a zero field width.
Real-Number	::= IMPLICIT OCTETSTRING a signed Real Number is composed of an octet-string of arbitrary-length, in compliance with the ANSI/IEEE 754 floating point number standard. The precision of the number is determined from the length. Both 32 and 64-bit precision are used. The null value is the "Not A Number" value defined in ANSI/IEEE 754.
Fraction-Number	MACRO ::= BEGIN TYPENOTATION := IMPLICIT INTEGERfraction VALUENOTATION := ".", INTEGER END a signed normalized fraction represented in an integer field of arbitrary-length. The Most Significant Bit represents the sign (using the two's complement convention). This is followed by an implied fractional point (decimal/binary point) followed by a representation of the fraction. The null value is a zero field width.
Bit-Value	::= OCTETSTRING a string of bits of arbitrary-length corresponding to a bit value, carried in a string of octets, padded to fill an integer number of octets. The null value is a zero field width.

X,Y Coordinate	(There is no specific X,Y coordinate entity in Annex B. Coordinates are handled in absolute, relative or differential coordinate strings. A single coordinate can be handled as a string containing only one coordinate entity.) a ordered pair of real numbers representing an X,Y coordinate
X,Y,Z Coordinate	pair. (There is no specific X,Y,Z coordinate entity in Annex B.) a ordered triplet of real numbers representing an X,Y,Z coordinate.

5.1.1.3 VRF Relational Tables Single Data Entities

In the relational table form of DIGEST the format of each column of data is given in the first row of the table. Certain data elements can be expressed in either short or long format. Which headers are used in particular tables are given in Annex C. Allowable field types are given in Table C-47 in section C.10.1.6. Since tables are of fixed column width it is necessary to make a distinction between an empty column entry and one of zero value. For each type of data there is a defined null/no value which is used to indicate an empty field. Numbers are represented in two's complement number format. The bit patterns and equivalent numbers shown below for the null/no value "Not A Number" (NAN) are for S,1 (Short Integer) 2 byte and I,1 (Long Integer) 4 byte numbers in VRF exchange data sets. The internal representation of these NANs may vary dependent upon the architecture of the platform upon which a system is implemented. The NAN value for Real numbers is defined in the IEEE 754 standard for "Binary Floating Point Arithmetic". The NAN value for Integer numbers is the maximum negative value of the twos complement number negative range, that is, the number at the extreme of the negative number range that has no positive equivalent under the absolute value operation. For systems that have different, usually longer, word lengths, the system must map the NAN value in the exchange data set into an equivalent internal number, not just store the NAN value in the exchange data set into the same bit pattern in the internal system.

The column headers for each data type are given below:

Integer Number (Short)	S,1 a signed Integer Number of 2-byte (16-bit) length. The null value is defined to be the bit pattern 10000000 00000000, which is equivalent to the maximum negative number in "two's complement number format". Therefore, the number range is from -32767 to 32767 with -32768 corresponding to the null value, for a 16-bit length number.
Integer Number (Long)	I,1 a signed Integer Number of 4-byte (32-bit) length. The null value is defined to be the bit pattern 10000000 00000000 00000000 00000000, which is equivalent to the maximum negative number in "two's complement number format". Therefore, the number range is from -2147483647 to 2147483647 with -2147483648 corresponding to the null value, for a 32-bit length number.
Real-Number (Short) (Single Precision)	F,1 a signed Real Number of 4-byte (32-bit) length in compliance with the ANSI/IEEE 754 floating point number standard. For table entries of this type that are "empty" the Not- a-Number form" defined in IEEE 754 is used. Note, there are implementation dependent limits on the guaranteed precision of floating point numbers defined in accordance with IEEE 754.
Real-Number (Long) (Double Precision)	R,1 a signed Real Number of 8-byte (64-bit) length in compliance with the ANSI/IEEE 754 floating point number standard. For table entries of this type that are "empty" the Not- a-Number form" defined in IEEE 754 is used. Note, there are implementation dependent limits on the guaranteed precision of floating point numbers defined in accordance with IEEE 754.
Fraction-Number	(This number form is currently not used in Annex C. Fraction number values will in the future be handled in Integer number fields, as stated above, to handle normalized offset coordinate units.)
Bit-Value	(This number form is currently not used in Annex C.)

X,Y Coordinate	C,n or C,* or B,n or B,* a ordered pair of numbers representing an X,Y coordinate pair. "C,n" corresponds to a 2-coordinate array of short Real (F,1) numbers with the null value equal to both coordinates being "Not-a-Number (NAN)". "C,*" corresponds to a 2-coordinate string, with the null value equal to a string length of 0. "B,n" corresponds to a 2-coordinate array of long Real (R,1) numbers with the null value equal to both coordinates being "Not-a- Number (NAN)". "B,*" corresponds to a 2-coordinate string, with the null value equal to a string length of 0.
X,Y,Z Coordinate	Z,n or Z,* or Y,n or Y,* a ordered triplet of numbers representing an X,Y,Z coordinate value. "Z,n" corresponds to a 3-coordinate array of short Real (F,1) numbers with the null value equal to both coordinates being "Not-a-Number (NAN)". "Z,*" corresponds to a 3-coordinate string, with the null value equal to a string length of 0. "Y,n" corresponds to a 3-coordinate array of long Real (R,1) numbers with the null value equal to both coordinates being "Not-a-Number (NAN)". "Y,*" corresponds to a 3- coordinate string, with the null value equal to a string length of 0.

5.1.1.4 IIF Single Data Entities

In the IIF form of DIGEST, information is defined in the form of a header and image, text and graphic elements. The header is coded purely as characters with the length of data fields defined in terms of a character count. The characters in the data fields are defined in terms of characters from the Base Multilingual Plane (BMP) of ISO 10646, or from the Base Character Set (BCS) (which corresponds to the first 8-bit "page" of ISO 10646 and is also equivalent to ISO 8859-1). In addition some fields make use of restricted repertoires of the BCS which allow for only Real numbers or Integers.

Positive Integer	IIF BCS-N positive integer character set Basic Character Set Numeric – positive integer. Positive Integer numbers may be composed of a subset of the Basic Character Set-Numeric characters, with the limitation to integer based on the field description.
Integer	IIF BCS-N integer character set Basic Character Set Numeric - integer. Integer numbers may be composed of a subset of the Basic Character Set-Numeric characters, with the limitation to integer based on the field description.

Real	IIF BCS-N character set Basic Character Set-Numeric. A signed Real Number (Explicit point number) of arbitrary size encoded as a string of text characters. The range of allowable characters consists of minus to the number "9", BCS codes 2/13 to 3/9, and plus, code 2/11.
Bit (Image Data Format)	IIF Image data formatThe Pixel Value Type field (PVTYPE) defines the type of encoding used: allowed values are INT for integer, B for bi-level, SI for 2's complement signed integer, R for Real, C for Complex.
X,Y Coordinate	(There is no specific X,Y coordinate format in Annex D. Coordinates are handled as a pair of "BCS-N" numbers.) a ordered pair of real numbers representing an X,Y coordinate pair.
X,Y,Z Coordinate	Not Applicable

5.1.2 Coordinate Strings

5.1.2.1 ISO 8211 Coordinate Strings

Strings

-- Strings of data elements, such as strings of coordinates, strings of bit values etc., are carried in ISO 8211 as repeating fields of single elements or sets of single elements; for example a repeating string of coordinates would be carried as a repetition of the set of two real number fields corresponding to X and Y. There is no special structure for strings of data in the ISO 8211 encapsulation.

5.1.2.2 ISO 8824/5 Coordinate Strings

(Note: the following is ISO 8824 ANS.1 code for the identified items)

Abs-Coordinate-String	::=	SEQUENCE OF Coord
		an arbitrary-length string of absolute coordinates

Edition 2.1, September 2000 5 - Data Types

••	
Rel-Coordinate-String	 SEQUENCE { INTEGER, OCTETSTRING} an arbitrary-length string of coordinates, which are described as relative to a Reference Coordinate defining a Local Coordinate System [see Part 2 clause 10.2]. A Scale factor relates the local coordinate system to the absolute coordinate system. The string consists of a sub-string length indicator and the string of coordinates with coordinates described in interleaved normalized binary integer form.
	The sub-string length indicator specifies the bit length of each coordinate element. Each coordinate consists of a pair of elements corresponding to binary fraction numbers representing dX, dY coordinates relative to the current coordinate position.
Dif-Coordinate-String	 SEQUENCE {Coord, INTEGER, INTEGER, OCTETSTRING} an arbitrary-length string of coordinates, which are encoded as relative to the previous coordinate in the string. The initial position is described as a coordinate relative to the Reference Coordinate defining a Local Coordinate System. A Scale factor, defined at the Layer/Coverage level, relates the local coordinate system to the absolute coordinate system. The differential coordinate string contains the initial position of the differential coordinate string, a differential factor, a sub-string length indicator and a string of coordinates in interleaved normalized binary integer form.
	The differential factor is common to all differential coordinates in the string and the coordinate length indicator specifies the bit length of each coordinate element. Each coordinate consists of a pair of elements corresponding to binary fraction numbers representing a dX^*2^F , dY^*2^F coordinate relative to the current coordinate position, where F is a differential factor.
Bit-String	<pre>::= SEQUENCE {Bit-Value} an arbitrary-length string of Bit Values.</pre>
Coord	 ::= CHOICE { [0] OCTETSTRING,X,Y [1] OCTETSTRING,X,Y,Z a ordered pair or triplet of binary fraction numbers representing an X, Y or X, Y, Z coordinate where the octet string is divided into two or three equal-length pieces which correspond to the two or three fraction numbers.

5.1.2.3 VRF Relational Tables Coordinate Strings

Strings -- Strings of data elements, such as strings of coordinates, strings of pixel values etc., are carried in Annex C as columns in relational tables in C, B, Z or Y format.

Strings	Strings of data elements, such as strings of coordinates, strings
	of pixel values etc., are carried in Annex C as columns in
	relational tables in C, B, Z or Y format.

5.1.2.4 IIF Coordinate Strings

Strings

-- Strings of data elements, are carried as repeating fields. There is no special structure for strings of data in the IIF encapsulation.

5.1.3 Other Data Entities

A date format YYYYMMDD is common to all encapsulations, in accordance with ISO 8601.

5.1.3.1 ISO 8211 Other Data Entities

ID Triplet	(The ID triplet field type is not used in Annex A.)
Date	 A coding of date in an ASCII data field. an item defining calendar date in accordance with ISO 8601. A specific A type data field is constructed to carry date information. The null value is all SPACE characters in the field.
Null Field	(The use of Null data elements in not applicable for Annex A.)

5.1.3.2 ISO 8824/5 Other Data Entities

(Note: the following is ISO 8824 ANS.1 code for the identified items)

ID Triplet	(The ID triplet field type is not used in Annex B.)
Date	IMPLICIT GENERALIZEDTIME an item defining the local calendar date and time, in accordance with ISO 8601 for the specification of a calendar date. The null value is a zero field width.
Null Field	::= IMPLICIT NULL A place holder element of null value
Further-Study	::= IMPLICIT NULL An equivalent to "Null Field" Items which are for further study in the interchange format in Annex B are identified within the syntactic structure by a null element.

5.1.3.3 VRF Relational Tables Other Data Entities

ID Triplet

K,1

- The ID triplet field type is used in edge and node primitive tables to provide cross-tile topology and seamless databases. This field type replaces the integer foreign key used in untiled coverages. The triplet is composed of an 8-bit type byte, followed by 1-4 subfields. The type byte is broken down into four 2-bit pieces that describe the subfields (Table 5-2). Figure C-22 is an example of the ID triplet field

Bit Count	Number Bits in
	Subfield
0	0
1	8
2	16
3	32

This design allows optional references to the next tile, in addition to internal references, without the necessity for having them stored exhaustively throughout the database. It also saves storage space when used with typical IDs (a sequence of IDs that runs from 1 up to 100,000 requires 92% of the space required by 32-bit integers).

 Date
 D,1

 -- an item defining the local calendar date and time, in accordance with ISO 8601 for the specification of a calendar date in 20 bytes. Generally only the first 8 bytes are used. The null value is all SPACE characters.

 Null Field
 X,1

 -- A place holder element of null value.

5.1.3.4 IIF Other Data Entities

Date

A coding of date in an BCS-N positive integer data field. -- a string of characters in a BCS-N positive integer field describing a date in accordance with a format defined for each particular data field in which it is used. (YYYYMMDD or CCYYMMDDhhmmss)

5.1.4 Textual Information

This standard supports two different types of text string - basic and general text, one for labels and other identifiers represented as characters, and one for human readable text in any language. Labels and identifiers are primarily meant for computer systems and are nothing more than an alphabetic code. Therefore they can be restricted to a relatively small character set. Human readable text may be expressed in any language of the world. As such it is necessary to have much more flexibility.

Three Lexical Levels are defined for text ranging from basic ASCII text to the generality of the Multilingual Plane of the ISO 10646 standard covering virtually every language in the world using a double byte code.

These are:

Lexical Level

- 0 Primary ASCII text (ISO 646)
- 1 Extended ASCII (including accents for Western European Latin alphabet based languages ISO 8859 Part 1 (Latin Alphabet 1))
- 3 Universal Character Set (Base Multilingual plane of ISO 10646) (note: 2 bytes per character)
- 2 Obsolete This level is based on a now obsolete ISO character coding standard and the code is retained for backward compatibility with previous versions of DIGEST.

Basic Text

Basic Text is used for all text subfields, which are alphanumeric identifiers, labels etc. and must be in ASCII only. (Lexical Level 0)

General Text

General Text is used to handle text subfields, which potentially would contain information in any language. General Text is composed of levels of alphabetic repertoire Lexical Level 1-3.

Only a small number of text fields throughout the standard may take on General Text. These General Text fields are identified in Table 5-7 below. An identifier associated with each general text field identifies the Lexical Level of that particular field. This is done in an implementation-dependent manner dependent upon the encapsulation.

The details of the method of identifying which general text fields are at which Lexical Level differs among the various encapsulations, as described in Annexes A, B, C and D.

In Annex A an optional "L" format is defined for any General Text subfield. This is a constructed text format which is implemented using ISO 8211 "A" format with the Lexical Level for that field defined in the Data Descriptive Record (DDR) of the data field in the data set.

In Annex B General Text is implemented by specifying a special General Text production which contains a tag identifying the Lexical level.

In Annex C the header for a table contains an indication of the Lexical Level of the text data in the table for a particular column.

In Annex D the IIF defines characters in terms of a Base Character Set and the Base Multilingual plane of ISO 10646. The Base Character Set - Alphanumeric (BCS-A) corresponds to BASIC TEXT (Lexical Level 0).

The Base Character Set (BCS) corresponds to GENERAL TEXT (Lexical Level 1). The Base Multilingual Plane (BMP) corresponds to GENERAL TEXT (Lexical Level 3).

General Text may also be used in text attributes. The Lexical Level of the attributes is done in an implementation-dependent manner dependent upon the encapsulation. For Annex A the value format subfield of the Explicit Attribute Labels and Values Field specifies which attributes may contain general text and the ISO 8211 Data Descriptive Record for a data field specifies the Lexical Level for that field. For Annexes B,C and D it is implemented in the same manner as for text fields within the standard.

Text is handled in the international character set standards in terms of two concepts: repertoire and coding. The repertoire is the list of possible characters, which are permitted. The coding is the assignment of computer bit patterns to identify each character. Both the repertoire and coding of the various character sets are described below. The repertoires remain the same between different encapsulations. The coding used may differ for efficiency or to accommodate restrictions such as relational form.

5.1.5 Text Syntax

5.1.5.1 ISO 8211 Text Syntax

Basic-Text (A)	ISO 8211 "A" format an arbitrary-length string of text characters taken from the International Reference Version (IRV) primary character code table (ASCII) as defined in ISO 646 including both the graphic G set and control C set as well as the SPACE character. The null value is a zero field width.
Basic-Text (A n)	ISO 8211 "A" format a string of "n" text characters taken from the International Reference Version (IRV) primary character code table (ASCII) as defined in ISO 646 including both the graphic G set and control C set as well as the SPACE character. The null value is a field filled with the DEL character.

General-Text (L)

"L" format text

- an arbitrary-length string of text taken from one of four repertoires.

- 0 basic ASCII text (ISO 646)
- Extended ASCII (including accents for Western European Latin alphabet based languages ISO 8859 Part 1 (Latin Alphabet 1))
- 2 obsolete retained for backward compatibility
- 3 Universal Character Set (Base Multilingual plane of ISO 10646) UCS-2 implementation level 2 (note: 2 bytes per character)

The null value is a zero field width. The distinction between which repertoire and coding is used is defined by the Lexical Level.

"L" format is a constructed format for ISO 8211; that is, the identifier "L" is used in the description of DIGEST in Annex A to identify those text fields which may take general text. "L" format is actually implemented as ISO 8211 "A" format, where the repertoire and coding is specified in accordance with the LEX flag or attribute.

When other than the default ASCII character set (Lexical Level 0) is used in an entire data set, ISO 8211 requires that the character sets used for each field be described in the Data Descriptive Record in the field controls which precede the field name for each field.

The character repertoires used in DIGEST are progressive supersets. This means that the highest level of character set used in any subfields in a field should be described in the DDR field controls for that field.

The following indicates the character set code identifier which should be put in DDR field controls for each Lexical Level:

Lexical Level 0 (ASCII - ISO 646 IRV) - (2/0) (2/0) (2/0) Lexical Level 1 (Latin 1 - ISO 8859) - (2/13) (4/1) (2/0) Lexical Level 2 obsolete -Lexical Level 3 (Multilingual - ISO 10646) - (2/5) (2/15) (4/3)

The ISO 8211 unit terminator UT used to separate the subfields and the field terminator FT must be encoded in the character set used for the field for which they occur. See Table 5-6.

In addition DDR in Relative Position RP 17 to 19 should contain (2/0) (2/1) (2/0) to indicate that individual fields may contain extended (non-ASCII) character sets.

DDR RP 10 and 11 should contain "09" indicating that there are 9 bytes containing field controls - the last three of which are escape sequences identifying extended character sets.

If lexical level 2 or 3 is used anywhere throughout the data set then DDR RP 7 should contain "E" (rather than "SPACE") to

indicate that in-line code extension may be encountered in the data file.

5.1.5.2 ISO 8824/5 Text Syntax

Basic-Text-String	::= IMPLICIT GRAPHICSTRING {ISO 2022 abstract syntaxes (1) 1 6}
	an arbitrary-length string of data taken from the International Reference Version (IRV) primary character code table (ASCII) as defined in ISO 646 including both the graphic G set and control C set as well as the SPACE character. These are registered under ISO 2375 with registration numbers 6 and 1 respectively, and standardized under CCITT recommendation T.50. The null value is a zero field width.
General-Text-String	 ::= CHOICE { an arbitrary-length string of text taken from one of four repertoires. [0] GRAPHICSTRING basic ASCII text (ISO 646 IRV) {ISO 2022 abstract syntaxes (1) 1 6}} [1] GRAPHICSTRING Extended ASCII (including accents for Western European Latin alphabet based - languages ISO 8859 Part 1 (Latin Alphabet 1)) - {ISO 2022 abstract syntaxes (1) 1 6 142} [2] NULL obsolete [3] GRAPHICSTRING Universal Character Set (Base - Multilingual plane of ISO 10646) (note: 2 bytes per - character) - {ISO 10646 transfer-syntaxes (0) two-octet-BMP form (2)} } The null value is a zero field width. The subfields which may use a General-Text-String are described in Table 5-7.

5.1.5.3 VRF Relational Tables Text Syntax

Textual information can be either variable-length or fixed-length in Annex C. The null state of a variable-length text string is of zero length. The null state of a fixed-length text string requires that a specific code be selected. The character DEL (code table position 7/15) should be used as the padding character. The character code NUL (code table position 0/0) and a number of other C0 control characters (see 5.2 below) may have special meaning on some computer systems and should not appear in any text strings. A NUL or a SUB (^Z) in a file is an "end of file" mark on some computers and should not be used in DIGEST text strings. Only those characters specified in the identified repertoire should be used at each lexical level.

Annex C does not make an explicit distinction between Basic Text and General Text. Certain data fields can only be expressed in Basic Text (ASCII).

Others may be expressed in Lexical Level 1 to 3. (The default is level 0 ASCII). These fields are identified in Table 5-7 below.

Basic-Text-String	T,n or T,* a fixed-length (T,n) or an arbitrary-length (T,*) string of text characters taken from the International Reference Version (IRV) primary character code table (ASCII) as defined in ISO 646 including both the graphic G set and control C set as well as the SPACE character. The null value is a zero field width for a variable width text field or blank filled for a fixed width text field.					
General-Text-String	 T,n or T,* or L,n or L,* or N,n or N,* or M,n or M,* an arbitrary-length string of text taken from one of four repertoires. 0 - Basic ASCII text (ISO 646) 1 - Extended ASCII (including accents for Western European Latin alphabet based languages ISO 8859 Part 1 (Latin Alphabet 1)) 2 - Obsolete 3 - Universal Character Set (Base Multilingual plane of ISO 10646) UCS-2 implementation level 2 (note: 2 bytes per character) 					
	The null value is a zero field width for a variable width text field or blank filled for a fixed width text field.					
	The distinction between which repertoire and coding is used is identified by the Field Type in each table header row. The following list indicates the Field Type code for each Lexical Level:					
	T,n or T,*Level 0 (ASCII - ISO 646 IRV)L,n or L,*Level 1 (Latin 1 - ISO 8859)N,n or N,*Level 2 obsolete - retained for backward compatibility					
	M,n or M,* Level 3 (Multilingual - ISO10646)					
	The asterisk (*) indicates variable-length string. The "n" indicates a fixed-length.					

5.1.5.4 IIF Text Syntax

Basic-Text-String

BCS-A

-- an arbitrary-length string of data taken from the Basic Character Set-Alphanumeric BCS-A which is a subset of the International Reference Version (IRV) primary character code table (ASCII) as defined in ISO 646. The range of allowable characters consists of space to tilde, codes 2/0 to 7/14.

General-Text-String	an arbitrary-length string of data taken from one of three repertoires dependent upon the lexical level.
	Level 0 = BCS-A (Basic Character Set-Alpha numeric) (ASCII) which is a subset of the International Reference Version (IRV) primary character code table as defined in ISO 646. The range of allowable characters consists of space to tilde, codes 2/0 to 7/14.
	Level 1 = ECS (Extended Character Set) Extended ASCII and ECS-A (Extended Character Set – Alphanumeric) which are subsets of ISO 8859 Part 1 (Latin Alphabet 1)) which is also equivalent to the base page (row 0x00) of the BMP A-zone of ISO 10646. ECS is composed of the whole Level 1 text Repertoire except BackSpace (0/8), Horizontal Tab (0/9) and Vertical Tab (0/11). ECS-A is composed of character codes from 2/0 to 7/E, and A/0 to F/F
	Level 2 = (not used)
	Level $3 = (not used)$

5.2 Code Tables

All text is defined in terms of character set code tables. Particular character codes are identified by a code table arranged into rows and columns in which 94 (or 96) character codes are assigned. A number of different character code tables are in use internationally, and these code tables are registered with the International Organization for Standardization (ISO) under ISO 2375. ISO 10646 provides a comprehensive multilingual character set, which eliminates the need to select individual alphabets from the ISO registry. ISO 10646 contains as its base page the ISO 8859 part 1 Latin alphabet 1, which itself contains as its base the International Reference Version (IRV) alphabet ISO 646. ISO 646 (IRV) is equivalent to ASCII (American Standard Code for Information Interchange ANSI X3.4).

The alphabetic part of the ISO 646 (IRV) and ISO 8859 code tables is termed the Graphic or "G" set. Another specialized code table, the Control or "C0" set, is also defined. Some of the C0 control characters are reserved for specialized use, such as transmission control in an asynchronous communications system or application level delimiting such as is used by ISO 8211 (the DIGEST Annex A encapsulation). The only Format Effector C0 characters required by DIGEST are: Carriage Return (CR), Line Feed (LF), Back Space (BS), Horizontal Tab (HT), Vertical Tab (VT) and Form Feed (FF). Since DIGEST/VRF operates in an 8-bit coding environment with three defined character repertoires corresponding to ISO standards, there is no need for the code extension characters Escape (ESC), Shift In (SI), or Shift Out (SO). All other C0 characters are not used in DIGEST text and have a null meaning. The use of C0 characters may be further restricted by a relevant product specification.

The ASCII (ISO 646 IRV) code table caters largely to the needs of the English language. It defines 94 characters within a single 7-bit code table (with bit 8 set to zero in an 8-bit implementation). For other Latin languages where accented letters are used extensively, and for other alphabets, the International Organization for Standardization (ISO) has defined other standards. There are several different standards defined by ISO dependent on the size of the repertoire of characters which must be addressed.

The ISO 8859 standard uses bit 8 of an 8-bit character field to switch between two code tables, the ASCII code table on the left and a supplementary code table on the right containing 94 additional characters. Each character has a single code.

The ISO 10646 standard defines a "Universal Character Set" for virtually all languages in the world. To do this it must use 16 bits or more to identify each character. DIGEST/VPF makes use of the Base Multilingual plane of ISO 10646 which uses 16 bits per character, handling ASCII, virtually all Latin alphabet languages, Greek, Hebrew, Cyrillic, Arabic, Chinese (Han - including Japanese Kanji and Korean Hangul), Japanese Katakana, etc. Virtually every modern alphabet is specified. Excluded are such character sets as ancient Egyptian hieroglyphics which require 32 bits per character.

The specific characters available under a given character set standard are called the repertoire of that standard. Different character set coding standards may be used as long as the character repertoires are identical. It doesn't matter whether the ISO 8211 encapsulation uses one bit combination (code) to represent a given character and ISO 8824 uses a different code, as long as the character identified is the same. Coding is an encapsulation issue, but, some of the ISO standards provide far richer repertoires of characters than do others, and therefore it is necessary in DIGEST to define several different levels of standard character repertoires. The defined repertoire of available characters is what is of principle importance for compatibility.

Three levels of repertoire are defined for DIGEST ranging from basic ASCII text to the support of any alphabet registered nationally or internationally. This range is broken into two broad levels: Basic Text and General Text.

Basic text (Level 0) is simply ASCII data and is used throughout the standard for various purposes. The repertoire is simply the 94 characters defined in the ASCII character set plus the SPACE character plus specific C0 control characters (Carriage Return (CR) and Line Feed (LF), etc.). Other C0 characters are not used in basic text.

General text includes the Latin alphabet accents and special characters and other alphabets. General text is normally used to specify attributes such as place names which can be defined in any world alphabet or for free text subfields or attributes. Three levels of general text repertoire are defined. These levels have been defined to be efficient in various encodings and at different levels of usage. For example Level 1 general text makes use of the Latin Alphabet 1 repertoire (commonly called 8-bit ASCII) which is directly compatible with virtually all computer systems. Level 1 general text addresses the needs of Western European languages. Level 2 is based on a now obsolete standard and is not used. The code level is retained for backward compatibility. Level 3 general text addresses the needs of almost all world languages, but it is less efficient in coding.

DIGEST may be extended to a fifth level of general text, which addresses the needs of all languages using the full capabilities of ISO 10646 UCS-4 requiring 4-bytes per character. However, this approach can be very complex and inefficient and is reserved for further study at this time.

5.2.1 Alphabets and Repertoire

The basic alphabet used in DIGEST is the International Reference Version alphabet of ISO 646, which is equivalent to ASCII. This alphabet is also standardized for Telematic interchange by the UN International Telegraphic Union (ITU-T), International Telephone and Telegraph Consultative Committee (CCITT). The International Reference Alphabet of CCITT recommendation T.50 is also equivalent to ASCII.

5.2.1.1 Level 0 Text Repertoire

The following code table presents the DIGEST Level 0 text repertoire, the Latin Alphabet Primary Code Table (ASCII). Both the G0 graphic and C0 control code tables are shown. Only the C0 Format Effector characters are illustrated. All other C0 control codes are not used. The code extension characters from the C0 set (ESC, SI, and SO) are not used in DIGEST. The 7-bit code table is shown. Bit 8 in an 8-bit field is set to 0.

				_	b8	0	0	0	0	0	0	0	0
				column	b7	0	0	0	0	1	1	1	1
				col	b6	0	0	1	1	0	0	1	1
				-	b5	0	1	0	1	0	1	0	1
		rov	N			0	1	2	3	4	5	6	7
b4	b3	b2	b1		- 1				0		D	1	-
0	0	0	0	0				Space	0	@	Р		р
0	0	0	1	1				!	1	Α	Q	a	q
0	0	1	0	2				"	2	B	R	b	r
0	0	1	1	3				#	3	C	S	c	S
0	1	0	0	4				\$	4	D	Т	d	t
0	1	0	1	5				%	5	Ε	U	e	u
0	1	1	0	6	-			&	6	F	V	f	v
0	1	1	1	7				1	7	G	W	g	w
0	0	0	0	8		BS		(8	Η	Χ	h	X
0	0	0	1	9		HT)	9	Ι	Y	i	у
0	0	1	0	10		LF		*	:	J	Ζ	j	Z
0	0	1	1	11		VT		+	;	K	[k	{
0	1	0	0	12		FF		,	<	L	١	1	
0	1	0	1	13		CR		-	=	Μ]	m	}
0	1	1	0	14				•	>	Ν	^	n	~
0	1	1	1	15	5			/	?	0	_	0	
							$\overline{}$	Ĺ			20		
						C	20			C	GO		

Table 5-3Latin Alphabet Primary Code Table; (ASCII)

5.2.1.2 Level 1 Text Repertoire

The following code table presents the DIGEST Level 1 text repertoire, which is the 8-bit code table from ISO 8859 part 1. The G0 graphic portion is equivalent to ASCII (used in DIGEST Level 1 text). The same C0 code table is also used with the same restriction to only Format Effector characters. All other C0 control codes are not used. The right hand side of the 8-bit coding environment contains the ISO 8859 supplementary code table and a blank C1 table. The supplementary characters are direct characters; that is, individual character codes are assigned for each accented character in the repertoire. In DIGEST Lexical Level 0 and 1 each character is coded using a single character. There are no constructed characters. This simplifies processing of such data.

				-																	
				=	b8	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
				column	b7	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
				[]	b6	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
				L	b5	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
		rov	N			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
b4	b3	b2	b1		-					~	_					_	0				
0	0	0	0	0				Space	0	@	P	1	p			NBSP	U	À	Ð	à	ð
0	0	0	1	1				!	1	Α	Q	a	q			i	±	Á	Ñ	á	ñ
0	0	1	0	2				"	2	B	R	b	r			¢	2	Â	Ò	â	ò
0	0	1	1	3				#	3	C	S	c	s			£	3	Ã	Ó	ã	ó
0	1	0	0	4				\$	4	D	Τ	d	t			¤	1	Ä	Ô	a	ô
0	1	0	1	5]			%	5	Ε	U	e	u			¥	μ	Å	Õ	å	õ
0	1	1	0	6				&	6	F	V	f	v				¶	Æ	Ö	æ	ö
0	1	1	1	7]			1	7	G	W	g	w			§	•	Ç	X	ç	÷
0	0	0	0	8	1	BS		(8	Η	Χ	h	X			"	4	È	Ø	è	ø
0	0	0	1	9	1	HT)	9	Ι	Y	i	у			©	1	É	Ù	é	ù
0	0	1	0	10		LF		*	••	J	Ζ	j	Z			<u>a</u>	<u>0</u>	Ê	Ú	ê	ú
0	0	1	1	11		VT		+	••	K	[k	{			~	>>	Ë	Û	ë	û
0	1	0	0	12	,	FF		,	۷	L	١	l				Г	$1/_{4}$	Ì	Ü	ì	ü
0	1	0	1	13		CR		-	Ш	Μ]	m	}			SHY	1/2	Í	Ý	í	ý
0	1	1	0	14	'			•	>	Ν	^	n	~			®	3/4	Î	₽	î	Þ
0	1	1	1	15				/	?	0	_	0					i	Ϊ	ß	ï	ÿ
						<u> </u>	ر							<u> </u>	ر	<u> </u>					
							ŽO				ĞO				21				Ğ1		
						C	20			, c	30			C	- 1			C	וכ		

 Table 5-4
 Latin Alphabet 1
 Code Table; ISO 8859 -1

5.2.1.3 Level 3 Text Repertoire

The Level 3 text repertoire supports all characters in the Base Multilingual Plane of ISO 10646, which is known as Universal Character Set 2 (UCS-2) for 2-byte coding. This character set is also known as "Unicode". It covers almost all languages in the world including the large iconographic character sets such as Chinese, Japanese and Korean. It is based on a 2-byte (16-bit) coding scheme.

There are several levels of sub-repertoire defined in ISO 10646 UCS-2. For DIGEST, UCS-2 level 2 is used because it permits the widest selection of characters including the combination accents used in Arabic and some other languages, but it is restricted only to unique character combinations that exist in real languages. Many computer systems only implement UCS-2 level 1, which is rigidly defined as one character per code. DIGEST data using UCS-2 level 2 would make use of default representations of any combined characters according to the rules of ISO 10646.

The two-byte coding scheme of UCS-2 makes use of two character codes (16 bits) to address into a very large code table (or plane). UCS-4 uses four 8-bit codes (32 bits) to

index into an enormous code space. The base plane of the UCS-4 code space, called the base multi-lingual plane, is equivalent to the UCS-2 code plane. The other planes support less frequently needed codes such as extended Chinese, Ancient Egyptian, etc. The first eight bits of the address space of both UCS-2 and UCS-4 match the ISO 8859 character set, and the first seven bits match ASCII. To the user of a database UCS codes are just 16 or 32-bit character codes. Direct support for ISO 10646 is provided in this manner by many computer vendors.

The entire repertoire of ISO 10646 is much too large to reproduce in this standard. Reference should be made to ISO 10646-1993. In brief the alphabets supported are:

Collection Number	Name	Code Positions				
1	Basic Latin	0020 - 007E				
2	Latin-1 Supplement	00A0 - 00FF				
3	Latin Extended-A	0100 - 017F				
4	Latin Extended-B	0180 - 024F				
5	IPA Extensions	0250 - 02AF				
6	Spacing Modifier Letters	02B0 - 02FF				
7	Combining Diacritical Marks	0300 - 036F				
8	Basic Greek	0370 - 03CF				
9	Greek Symbols and Coptic	03D0 - 03FF				
10	Cyrillic	0400 - 04FF				
11	Armenian	0530 - 058F				
12	Basic Hebrew	05D0 - 05EA				
13	Hebrew Extended	0590 - 05CF, 05EB - 05FF				
14	Basic Arabic	0600 - 0652				
15	Arabic Extended	0653 - 06FF				
16	Devanagari	0900 - 097F, 200C, 200D				
17	Bengali	0980 - 09FF, 200C, 200D				
18	Gurmukhi	0A00 - 0A7F, 200C, 200D				
19	Gujarati	0A80 - 0AFF, 200C, 200D				
20	Oriya	0B00 - 0B7F, 200C, 200D				
21	Tamil	0B80 - 0BFF, 200C, 200D				
22	Telugu	0C00 - 0C7F, 200C, 200D				
23	Kannada	0C80 - 0CFF, 200C, 200D				
24	Malayalam	0D00 - 0D7F, 200C, 200D				
25	Thai	0E00 - 0E7F				
26	Lao	0E80 - 0EFF				
27	Basic Georgian	10D0 - 10FF				
28	Georgian Extended	10A0 - 10CF				
29	Hangul Jamo	1100 - 11FF				
30	Latin Extended Additional	1E00 - 1EFF				
31	Greek Extended	1F00 - 1FFF				
32	General Punctuation	2000 - 206F				
33	Superscripts and Subscripts	2070 - 209F				
34	Currency Symbols	20A0 - 20CF				
35	Combining Diacritical Marks for Symbols	20D0 - 20FF				
36	Letter Like Symbols	2100 - 214F				
37	Number Forms	2150 - 218F				
38	Arrows	2190 - 21FF				

Table 5-5 Character Set Repertoire of ISO 10646 Base Multilingual Plane

39	Mathematical Operators	2200 - 22FF
40	Miscellaneous Technical	2300 - 23FF
40	Control Pictures	2400 - 243F
41 42	Optical Character recognition	2400 - 245F 2440 - 245F
42	Enclosed Alphanumerics	2440 - 245F 2460 - 24FF
43		2400 - 24FF 2500 - 257F
	Box Drawing	
45	Block Elements	2580 - 259F
46	Geometric Shapes	25A0 - 25FF
47	Miscellaneous Symbols	2600 - 26FF
48	Dingbats	2700 - 27BF
49	CJK Symbols and Punctuation	3000 - 303F
50	Hiragana	3040 - 309F
51	Katakana	30A0 - 30FF
52	Bopomofo	3100 - 312F
53	Hangul Compatibility Jamo	3130 - 318F
54	CJK Miscellaneous	3190 - 319F
55	Enclosed CJK Letters and Months	3200 - 32FF
56	CJK Compatibility	3300 - 33FF
57	Hangul	3400 - 3D2D
58	Hangul Supplementary-A	3D2E - 44B7
59	Hangul Supplementary-B	44B8 - 4DFF
60	CJK Unified Ideograms	4E00 - 9FFF
61	Private Use Area	E000 - F8FF
62	CJK Compatibility Ideograms	F900 - FAFF
63	Alphabetic Presentation Forms	FB00 - FB4F
64	Arabic Presentation Forms-A	FB50 - FDFF
65	Combining Half Marks	FE20 - FE2F
66	CJK Compatibility Forms	FE30 - FE4F
67	Small Form Variants	FE50 - FE6F
68	Arabic Presentation Forms-B	FE70 - FEFE
69	Halfwidth and Fullwidth Forms	FF00 - FFEF
70	Specials	FFF0 - FFFD

5.2.2 Coding of Character Sets

The coding used for DIGEST Text Level 0 and 1 is simply 8-bit character codes. One character code corresponds directly to one character. Control characters used as delimiters in ISO 8211 and on some telecommunications lines are avoided. This coding is supported by all encapsulations (ISO 8211, ISO 8824/5, VRF and IIF) in the same manner.

The coding of characters in for Lexical Level 3 makes use of 16 bits per character. This approach is supported directly in the relational table encapsulation and in the ISO 8824 encapsulation. In the ISO 8211 encapsulation 16-bit character encoding is also used, however, sub fields and fields are delimited or terminated by use of the control characters "unit terminator" UT and "field terminator" FT. These control characters must be encoded in the character set used for the field in which they occur. The following table defines the terminators for each level in an ISO 8211 encapsulation.

Lexical level	UT	FT
level 0	(1/15)	(1/14)
level 1	(1/15)	(1/14)
level 3	(0/0) (1/15)	(0/0) (1/14)

Table 5-6 - The Coding of ISO 8211 Terminators

Note: In a previous version of DIGEST a coding scheme for level 3 characters, called UTF-1 that "folded" 16-bit character codes into a variable-length stream of 8-bit character codes, was used in order to avoid any conflicts with the terminator characters. The approach described above, using two byte terminator characters, was recommended by the ISO JTC1 committee that is responsible for ISO 8211. This approach is also compatible with the coding of 16-bit character codes in the International Hydrographic Organization S-57 Version 3 standard.

5.2.3 Lexical Fields

The following is a table of text subfields which may carry general text. These text fields may have a Lexical Level of 0, 1, 2 or 3.

Record	Field Name	Field Tag (see note 1)	SubField Name	Subfield Label (see note 1)
GENERAL INFORMATION	GENERAL_INFORMATION (see note 2)	GEN	Free Text (e.g. description of digitizing equipment)	
SOURCE	COPYRIGHT	CPY	Copyright statement	CPZ
SUPPLEMENTARY TEXT	SUPPLEMENTARY_TEXT (see note 2)	SUP	(Free text (supplementary text)	TXT
QUALITY	OTHER_QUALITY_INFORMATIO	QOI	Free text	OQI
TEXT REPLACEMENT (Text associated with identified feature)	FTX	TEXT	TXT	Text

Table 5-7 Table of General-Text Fields Defined in DIGEST
--

Notes:

1. The Annex A Field Tags and Subfield Labels have been used for clarity.

2. Due to a limitation in ISO 8211-1985 and ISO 8211-1994 there is no capability of specifying the character set (Lexical Level) being used at the subfield level. Therefore, an entire field must be of the same Lexical Level. This affects only two fields: the GENERAL_INFORMATION field and the SUPPLEMENTARY_TEXT field. In both of these fields there exists an "A" format subfield which takes on specific values. In the GENERAL_INFORMATION field the IMR (Image Rectification Field) can take on the value "Y" or "N". In the SUPPLEMENTARY_TEXT field the TRY(Supplementary text record type) can take on the values "CONV", "CPYZ", "DATM", "MISC", "NOTE", "XXXX". Since these are specific text strings composed of only ASCII characters, and because these characters take on the same bit patterns at all Lexical Levels, there is no actual difficulty. Until this restriction is corrected in a future version of ISO 8211, care must be taken when maintaining DIGEST so that no additional "A" subfields are added to records that contain "L" format subfields.

6 GEODETIC CODES AND PARAMETERS

The 4 main geodetic concepts in this chapter are ellipsoid, datum, projection and grid system.

A geodetic datum includes an ellipsoid as one of its defining components. A grid system includes a datum and a projection among its defining components. The way in which geodetic datum, ellipsoid, grid and projection are inter-related is shown in Figure 6-1.

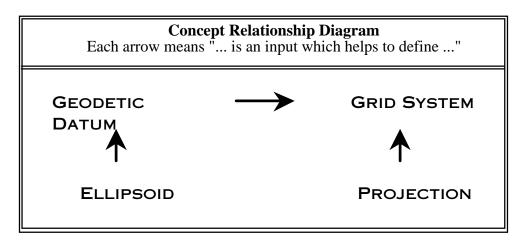


Figure 6-1 Concept Relationships

The codes identifying ellipsoid, datum, projection and grid are listed in Tables 6-1, 6-2, 6-5 and 6-6.

It should be noted that the grid codes in Table 6-6 are allocated to both grid systems and grid categories. A grid category includes a number of different grids, with variations in geodetic datum and/or zone of application. The most obvious example is Universal Transverse Mercator.

Each table is in alphabetic order of codes. However, where an entity and its code do <u>not</u> begin with the same letter, a cross-reference is given after the expected group of codes. For example, "Ayabelle Lighthouse (*see code PHA*)" is shown after the datum codes beginning with "A".

6.1 Ellipsoid Codes

The parameters (semimajor axis a and inverse flattening 1/f) are purely to assist ellipsoid identification. The abbreviation "*Alt*:" is used to denote alternative codes originating from DIGEST 1.2, which are included for backward compatibility.

In some cases, ellipsoids have come into existence as part of a datum definition. As a result, some ellipsoids are known by the same name as the datum, although the codes will differ.

Note the presence of special codes: NO for no ellipsoid, ZY for other known ellipsoid and ZZ for unknown ellipsoid.

Ellipsoid	Ellipsoid
(followed by parameters a, 1/f)	Code
Airy (1830)	AA
(6377563.396, 299.3249646)	Alt: AAY
US - Modified Airy	AM
UK - Airy Modified	Alt: AAM
(6377340.189, 299.3249646)	
Australian National (1966)	AN
(6378160.000, 298.2500000)	1 11 1
APL 4.5 (1968)	AP
(6378144.000, 298.2300000)	
Average Terrestrial System 1977	AT
(6378135.000, 298.2570000)	
Airy (War Office)	AW
(6377542.178, 299.3250000)	
Bessel (Modified)	BM
(6377492.018, 299.1528128)	
Bessel 1841 (Namibia)	BN
(6377483.865, 299.1528128)	
US - Bessel 1841 (Ethiopia, Indonesia, Japan, Korea)	BR
UK - Bessel (1841) Revised	
(6377397.155, 299.1528128)	
Clarke 1858	CA
(6378235.600, 294.2606768)	
Clarke 1858 (Modified)	CB
(6378293.645, 294.2600000)	
Clarke 1866	CC
(6378206.400, 294.9786982)	Alt: CLK
US - Clarke 1880	CD
UK - Clarke 1880 Modified	Alt: CLJ
(6378249.145, 293.4650000)	
Clarke 1880 (Cape)	CE
(6378249.145, 293.4663077)	
Clarke 1880 (Palestine)	CF
6378300.782, 293.4663077)	
Clarke 1880 (IGN)	CG
(6378249.200, 293.4660213)	
Clarke 1880 (Syria)	CI
(6378247.842, 293.4663517)	CI
Clarke 1880 (Fiji)	CJ
(6378301.000, 293.4650000)	
Clarke 1880 (Unspecified)	CL
(-,-)	
Danish (1876) or Andrae	DA
(6377104.430, 300.000000)	

Table 6-1	Ellipsoid Codes
-----------	-----------------

Delambre 1810	DB
(6376985.228, 308.6400000)	DD
Delambre (Carte de France)	DC
(6376985.000, 308.6400000)	De
US - Everest (India 1830)	EA
UK - Everest (1830)	
(6377276.345, 300.8017000)	
US - Everest (Brunei and E. Malaysia (Sabah and Sarawak))	EB
UK - Everest (Borneo)	
(6377298.556, 300.8017000)	
US - Everest (India 1956)	
UK - Everest (India)	EC
(6377301.243, 300.8017000)	20
UK takes 1/f as 300.8017255.	
US - Everest (W. Malaysia 1969)	ED
UK - Everest (Malaya RSO)	
(6377295.664, 300.8017000)	
US - Everest (W. Malaysia and Singapore 1948)	EE
UK - Everest (Malaya RKT)	
(6377304.063, 300.8017000)	
Everest (Pakistan)	EF
(6377309.613, 300.8017000)	
Everest (Unspecified)	EV
(-,-)	LV
US - Modified Fischer 1960 (South Asia)	FA
UK - Fischer 1960 (South Asia)	111
(6378155.000, 298.3000000)	
Fischer 1968	FC
(6378150.000, 298.3000000)	10
Fischer 1960 (Mercury)	FM
(6378166.000, 298.3000000)	
Germaine (Djibouti)	GE
(6378284.000, 294.000000)	02
Geodetic Reference System: <i>see codes RE, RF</i>	
Hayford 1909	HA
(6378388.000, 296.9592630)	
The original version, based on $a=6378388$, $b=6356909$.	
Helmert 1906	HE
(6378200.000, 298.300000)	
Hough 1960	НО
(6378270.000, 297.0000000)	
IAG Best Estimate 1975	IA
(6378140.000, 298.2570000)	
Indonesian National (1974)	ID
(6378160.000, 298.2470000)	
US - International 1924	IN
UK - International	Alt: INT
(6378388.000, 297.0000000)	
Krassovsky (1940)	KA
(6378245.000, 298.3000000)	Alt: KRA
Krayenhoff 1827	KB
(6376950.400, 309.6500000)	
Modified Airy: see code AM	
mounte Ally, see toue Am	

Modified Fischer: see code FA	
No ellipsoid	NO
NWL-8E	NW
(6378145.000, 298.2500000)	
Plessis Modified	PM
(6376523.000, 308.6400000)	
Plessis Reconstituted	PR
(6376523.994, 308.6248070)	
Geodetic Reference System 1967	RE
(6378160.000, 298.2471674)	
Geodetic Reference System 1980	RF
(6378137.000, 298.2572221)	
South American	SA
(6378160.000, 298.2500000)	
Soviet Geodetic System 1985	SG
(6378136.000, 298.2570000)	
Ellipsoid Junction	SJ
Soviet Geodetic System 1990	SN
(6378136.000, 298.2578393)	
Struve 1860	ST
(6378298.300, 294.7300000)	
Svanberg	SV
(6376797.000, 304.2506000)	
Walbeck 1819 (Planheft 1942)	WA
(6376895.000, 302.7821565)	
Walbeck 1819 (AMS 1963)	WB
(6376896.000, 302.7800000)	
World Geodetic System 1966	WC
(6378145.000, 298.2500000)	
World Geodetic System 1972	WD
(6378135.000, 298.2600000)	Alt: WGC
World Geodetic System 1984	WE
(6378137.000, 298.2572236)	Alt: WGE
World Geodetic System (Unspecified)	WF
(-,-)	
US - War Office 1924 (McCaw)	WO
UK - War Office 1924	
(6378300.000, 296.000000)	
World Geodetic System 1960	WS
(6378165.000, 298.3000000)	
Other Known Ellipsoid	ZY
Unknown Ellipsoid	ZZ

6.2 Datum Codes

Table 6-2 provides the allowable datums and their codes for the Geodetic Datum fields. Details of transformations between most of the datums and WGS84 can be found in DMA Technical Report 8350.2.

In some cases a geodetic datum with a 3-letter code is followed by 4-letter codes referring to the same datum but specifying particular regions. See, for example, codes AINA and AINB which follow AIN.

The 4-letter codes are **not different datums**, but "regional" solutions to the datum. **Regional solutions represent regional variations in the datum's relationship with WGS 1984** (arising from regional distortions in the datum). Use of the 4-letter code is recommended when there is a need to identify that relationship.

Unless indicated otherwise at the end of the datum name, the Zero Meridian is always Greenwich. Datums with a zero meridian other than Greenwich have "1" as a 4th character in the datum code.

To assist the process of matching ellipsoids to datums, ellipsoid codes are shown in the final column.

The abbreviation "*Alt*:" is used to denote alternative codes originating from DIGEST 1.2, which are included for backward compatibility.

Note the presence of special codes:

Geodetic Datums (Table 6-2): UND for undetermined datum and ZYX for other known datum.

Sounding Datums (Table 6-4): ZYX for other known sounding datum and ZZZ for unknown.

Geodetic Datums Each Horizontal Datum below can also be used as a Vertical Datum (but only in the case where the ellipsoid is the surface from which elevation is measured)	Datum Code	Ellipsoid Code
Adindan	ADI	CD
Adindan (Ethiopia)	ADIA	CD
Adindan (Sudan)	ADIB	CD
Adindan (Mali)	ADIC	CD
Adindan (Senegal)	ADID	CD
Adindan (Burkina Faso)	ADIE	CD
Adindan (Cameroon)	ADIF	CD
Adindan (Mean value: Ethiopia and Sudan)	ADIM	CD
Afgooye (Somalia)	AFG	KA
Antigua Island Astro 1943	AIA	CD
Ain el Abd 1970	AIN	IN
Ain el Abd 1970 (Bahrain Island)	AINA	IN
Ain el Abd 1970 (Saudi Arabia)	AINB	IN
American Samoa Datum 1962	AMA	CC
Amersfoort 1885/1903 (Netherlands)	AME	BR
Anna 1 Astro 1965 (Cocos Islands)	ANO	AN
Approximate Luzon Datum (Philippines)	APL	CC

Table 6-2Geodetic Datum Codes

A == 1050	ADE	CD
Arc 1950	ARF	CD
Arc 1950 (Botswana)	ARFA	CD
Arc 1950 (Lesotho)	ARFB	CD
Arc 1950 (Malawi)	ARFC	CD
Arc 1950 (Swaziland)	ARFD	CD
Arc 1950 (Zaire)	ARFE	CD
Arc 1950 (Zambia)	ARFF	CD
Arc 1950 (Zimbabwe)	ARFG	CD
Arc 1950 (Burundi)	ARFH	CD
Arc 1950 (Mean value: Botswana, Lesotho, Malawi,	ARFM	CD
Swaziland, Zaire, Zambia, and Zimbabwe)		
Arc 1960	ARS	CD
Arc 1960 (Kenya)	ARSA	CD
Arc 1960 (Tanzania)	ARSB	CD
Arc 1960 (Mean value: Kenya, Tanzania)	ARSM	CD
Arc 1935 (Africa)	ART	CD
Ascension Island 1958 (Ascension Island)	ASC	IN
Montserrat Island Astro 1958	ASM	CD
Astro Station 1952 (Marcus Island)	ASQ	IN
Astro Beacon "E" (Iwo Jima Island)	ATF	IN
Average Terrestrial System 1977, New Brunswick, Nova Scotia, Prince	ATX	AT
Edward Island		
Australian Geod. 1966 (Australia and Tasmania Is.)	AUA	AN
Australian Geod. 1984 (Australia and Tasmania Is.)	AUG	AN
Astro DOS 71/4: see code SHB		·
Astro Term Is. 1961: see code TRN		
Ayabelle Lighthouse: see code PHA		
Djakarta (Batavia) (Sumatra Island, Indonesia)	BAT	BR
Djakarta (Batavia) (Sumatra Island, Indonesia) with Zero Meridian Djakarta	BAT1	BR
Bekaa Base South End (Lebanon)	BEK	CG
Belgium 1950 System (Lommel Signal, Belgium)	BEL	IN
See code ODU for Belgium 1972	DEL	114
Bermuda 1957 (Bermuda Islands)	BER	CC
Bissau (Guinea-Bissau)	BID	IN
Modified BJZ54 (China)	BID BJM	KA
BJZ54 (A954 Beijing Coordinates) (China)	BJZ	KA
Bogota Observatory (Colombia)	-	IN
0	BOO	
Bogota Observatory (Colombia) with Zero Meridian Bogota	BOO1	IN
Bern 1898 (Switzerland)	BRE	BR
Bern 1898 (Switzerland) with Zero Meridian Bern	BRE1	BR
Bukit Rimpah (Bangka & Belitung Islands, Indonesia)	BUR	BR
Belgium 1972: see code ODU		
Bellevue (IGN): see code IBE		
Cape Canaveral (Mean value: Florida and Bahama Islands)	CAC	CC
Campo Inchauspe (Argentina)	CAI	IN
Camacupa Base SW End (Campo De Aviacao, Angola)	CAM	CD
Canton Astro 1966 (Phoenix Islands)	CAO	IN
		CE
Cape (South Africa)	CAP	
Cape (South Africa) Camp Area Astro (Camp McMurdo Area, Antarctica)	CAP CAZ	IN
Cape (South Africa)		
Cape (South Africa) Camp Area Astro (Camp McMurdo Area, Antarctica)	CAZ	IN
Cape (South Africa) Camp Area Astro (Camp McMurdo Area, Antarctica) S-JTSK, Czechoslovakia (prior to 1 Jan 1993)	CAZ CCD	IN BR
Cape (South Africa) Camp Area Astro (Camp McMurdo Area, Antarctica) S-JTSK, Czechoslovakia (prior to 1 Jan 1993) Carthage (Tunisia)	CAZ CCD CGE	IN BR CG

0		
Corrego Alegre (Brazil)	COA	IN
Conakry Pyramid of the Service Geographique (Guinea)	COV	CG
Guyana CSG67	CSG	IN
Dabola (Guinea)	DAL	CD
DCS-3 Lighthouse, Saint Lucia, Lesser Antilles	DCS	CD
Deception Island, Antarctica	DID	CD
GUX 1 Astro (Guadacanal Island)	DOB	IN
Dominica Astro M-12, Dominica, Lesser Antilles	DOM	
Djakarta (Batavia): see codes BAT, BAT1		
DOS 1968 (Gizo Island): see code GIZ		
Easter Island 1967 (Easter Island)	EAS	IN
Wake-Eniwetok 1960 (Marshall Islands)	ENW	HO
European 1950	EUR	IN
European 1950 (Western Europe: Austria, Denmark, France,	EURA	IN
Federal Republic of Germany, Netherlands, and Switzerland)		
European 1950 (Greece)	EURB	IN
European 1950 (Norway and Finland)	EURC	IN
European 1950 (Portugal and Spain)	EURD	IN
European 1950 (Cyprus)	EURE	IN
European 1950 (Egypt)	EURF	IN
European 1950 (England, Channel Islands, Scotland, and	EURG	IN
Shetland Islands)		
European 1950 (Iran)	EURH	IN
European 1950 (Sardinia)	EURI	IN
European 1950 (Sicily)	EURJ	IN
European 1950 (England, Channel Islands, Ireland, Northern	EURK	IN
Ireland, Scotland, Shetland Islands, and Wales)		
European 1950 (Malta)	EURL	IN
European 1950 (Mean value: Austria, Belgium, Denmark,	EURM	IN
Finland, France, Federal Republic of Germany, Gibraltar,		
Greece, Italy, Luxembourg, Netherlands, Norway, Portugal,		
Spain, Sweden, & Switzerland)		
European 1950 (Iraq, Israel, Jordan, Kuwait, Lebanon, Saudi	EURS	IN
Arabia, and Syria)		
European 1950 (Tunisia)	EURT	IN
European 1979 (Mean value: Austria, Finland, Netherlands, Norway, Spain,	EUS	IN
Sweden, and Switzerland)		
European Terrestrial Reference System 1989 (ETRS89)	EUT	RF
Oman (Oman)	FAH	CD
Observatorio Meteorologico 1939 (Corvo and Flores Islands, Azores)	FLO	IN
Fort Thomas 1955 (Nevis, St Kitts, Leeward Islands)	FOT	CD
Gan 1970 (Addu Atoll, Republic of Maldives)	GAA	IN
Gandajika Base (Zaire)	GAN	IN
Geocentric Datum of Australia (GDA)	GDS	RF
GDZ80 (China)	GDZ	IA
Geodetic Datum 1949 (New Zealand)	GEO	IN
DOS 1968 (Gizo Island, New Georgia Islands)	GIZ	IN
Graciosa Base SW (Faial, Graciosa, Pico, Sao Jorge, and Terceira Island,	GRA	IN
Azores)		
Greek Datum, Greece	GRK	BR
Greek Geodetic Reference System 1987 (GGRS 87)	GRX	RF
Gunong Segara (Kalimantan Island, Indonesia)	GSE	BR
Gunong Serindung	GSF	BR
Guam 1963	GUA	CC

Guyana CSG67: see code CSG		
Herat North (Afganistan)	HEN	IN
Hermannskogel	HER	BR
Provisional South Chilean 1963 (or Hito XVIII 1963) (S. Chile, 53°S)	HIT	IN
Hjörsey 1955 (Iceland)	HJO	IN
Hong Kong 1963 (Hong Kong)	HKD	IN
Hong Kong 1929	НКО	CA
Hu-Tzu-Shan	HTN	IN
Hungarian 1972	HUY	RE
Bellevue (IGN) (Efate and Erromango Islands)	IBE	IN
Indonesian 1974	IDN	ID
Indian	IND	
Indian (Thailand and Vietnam)	INDA	
Indian (Bangladesh)	INDB	EA
Indian (India and Nepal)	INDI	EC
Indian (Pakistan)	INDP	EF
Indian (1954)	INF	EA
Indian 1954 (Thailand)	INFA	EA
Indian 1960	ING	EA
Indian 1960 (Vietnam: near 16°N)	INGA	EA
Indian 1960 (Con Son Island (Vietnam))	INGB	EA
Indian 1975	INH	EA
Indian 1975 (Thailand)	INHA	EA
Ireland 1965 (Ireland and Northern Ireland)	IRL	AM
ISTS 061 Astro 1968 (South Georgia Islands)	ISG	IN
ISTS 073 Astro 1969 (Diego Garcia)	IST	IN
Johnston Island 1961 (Johnston Island)	JOH	IN
Kalianpur (India)	KAB	EC
Kandawala (Sri Lanka)	KAN	EA
Kertau 1948 (or Revised Kertau) (West Malaysia and Singapore)	KEA	EE
KCS 2, Sierra Leone	KCS	WO
Kerguelen Island 1949 (Kerguelen Island)	KEG	IN
Korean Geodetic System 1995 (South Korea)	KGS	RF
KKJ (or Kartastokoordinaattijarjestelma), Finland	KKX	IN
Kusaie Astro 1951	KUS	IN
Kuwait Oil Company (K28)	KUW	CD
L.C. 5 Astro 1961 (Cayman Brac Island)		CC
Leigon (Ghana)	LEH	CD
Liberia 1964 (Liberia)	LIB	CD
Lisbon (Castelo di São Jorge), Portugal	LIS	
Local Astro.	LOC	
Loma Quintana (Venezuela)	LOM	IN
Luzon	LUZ	CC
Luzon (Philipines except Mindanao Island)	LUZA	CC
Luzon (Mindanao Island)	LUZB	CC
Marco Astro (Salvage Islands)	MAA	IN
Martinique Fort-Desaix	MAR	IN
Massawa (Eritrea, Ethiopia)	MAS	BR
Manokwari (West Irian)	MAW	
Mayotte Combani	MCX	IN
Mount Dillon, Tobago	MDT	CB
Merchich (Morocco)	MER	CG
Midway Astro 1961 (Midway Island)	MID	IN
Mahe 1971 (Mahe Island)	MIK	CD
	TATT	

Minna	MIN	CD
Minna (Cameroon)	MINA	CD
Minna (Nigeria)	MINB	CD
Rome 1940 (or Monte Mario 1940), Italy	MOD	IN
Rome 1940 (or Monte Mario 1940), Italy, with Zero Meridian Rome	MOD1	IN
Montjong Lowe	MOL	BR
M'Poraloko (Gabon)	МРО	CD
Viti Levu 1916 (Viti Levu Island, Fiji Islands)	MVS	CD
Modified BJZ54: see code BJM		
Montserrat Island Astro 1958: see code ASM		
Nahrwan	NAH	CD
Nahrwan (Masirah Island, Oman)	NAHA	CD
Nahrwan (United Arab Emirates)	NAHB	CD
Nahrwan (Saudi Arabia)	NAHC	CD
Naparima (BWI, Trinidad and Tobago)	NAP	IN
North American 1983	NAR	RF
North American 1983 (Alaska, excluding Aleutian Islands)	NARA	RF
North American 1983 (Canada)	NARB	RF
North American 1983 (CONUS)	NARC	RF
North American 1983 (Mexico and Central America))	NARD	RF
North American 1983 (Aleutian Islands)	NARE	RF
North American 1983 (Hawaii)	NARH	RF
North American 1927	NAS	CC
North American 1927 (Eastern US)	NASA	CC
North American 1927 (Western US)	NASB	CC
North American 1927 (Mean value: CONUS)	NASC	CC
North American 1927 (Alaska)	NASD	CC
North American 1927 (Mean value: Canada)	NASE	CC
North American 1927 (Alberta and British Columbia)	NASF	CC
North American 1927 (Newfoundland, New Brunswick, Nova	NASG	CC
Scotia and Quebec)		
North American 1927 (Manitoba and Ontario)	NASH	CC
North American 1927 (Northwest Territories and	NASI	CC
Saskatchewan)		
North American 1927 (Yukon)	NASJ	CC
North American 1927 (Mexico)	NASL	CC
North American 1927 (Central America - Belize, Costa Rica, El	NASN	CC
Salvador, Guatemala, Honduras, and Nicaragua)		
North American 1927 (Canal Zone)	NASO	CC
North American 1927 (Caribbean, Barbados, Caicos Islands,	NASP	CC
Cuba, Dominican Republic, Grand Cayman, Jamaica, Leeward		
Islands, and Turks Islands)		
North American 1927 (Bahamas, except San Salvador Island)	NASQ	CC
North American 1927 (San Salvador Island)	NASR	CC
North American 1927 (Cuba)	NAST	CC
North American 1927 (Hayes Peninsula, Greenland)	NASU	CC
North American 1927 (Aleutian Islands East of 180°W)	NASV	CC
North American 1927 (Aleutian Islands West of 180°W)	NASW	CC
Revised Nahrwan	NAX	CD
New French or Nouvelle Triangulation Française (NTF) with Zero Meridian	NFR1	CG
Paris	Alt: FDA	
North Sahara 1959	NSD	CD
Ocotopeque, Guatemala	OCO	
Belgium 1972 (Observatoire d'Uccle)	ODU	IN
Old Egyptian (Egypt)	OEG	HE

Ordnance Survey of Great Britain 1936	OGB	AA
Ordnance Survey G.B. 1936 (England)	OGB	AA
Ordnance Survey G.B. 1936 (England, Isle of Man, and	OGBB	AA
Wales)	0000	
Ordnance Survey G.B. 1936 (Scotland and Shetland Islands)	OGBC	AA
Ordnance Survey G.B. 1936 (Wales)	OGBD	AA
Ordnance Survey G.B. 1936 (Mean value: England, Isle of	OGBM	AA
Man, Scotland, Shetland, and Wales)		
Old Hawaiian	ОНА	CC
Old Hawaiian (Hawaii)	OHAA	CC
Old Hawaiian (Kauai)	OHAB	CC
Old Hawaiian (Maui)	OHAC	CC
Old Hawaiian (Oahu)	OHAD	CC
Old Hawaiian (Mean value)	OHAM	CC
Oslo Observatory (Old), Norway	OSL	BM
Oman: see code FAH		
Observatorio Meteorologico 1939: see code FLO		
Padang Base West End (Sumatra, Indonesia)	PAD	BR
Padang Base West End (Sumatra, Indonesia) with Zero Meridian Djakarta	PAD1	BR
Palestine 1928 (Israel, Jordan)	PAL	CF
Potsdam or Helmertturm (Germany)	PDM	IN
Ayabelle Lighthouse (Djibouti)	PHA	CD
Pitcairn Astro 1967 (Pitcairn Island)	PIT	IN
Pico de las Nieves (Canary Islands)	PLN	IN
SE Base (Porto Santo) (Porto Santo & Madeira Islands)	POS	IN
Provisional South American 1956	PRP	IN
Prov. S. American 1956 (Bolivia)	PRPA	IN
Prov. S. American 1956 (Northern Chile near 19°S)	PRPB	IN
Prov. S. American 1956 (Southern Chile near 43°S)	PRPC	IN
Prov. S. American 1956 (Columbia)	PRPD	IN
Prov. S. American 1956 (Ecuador)	PRPE	IN
Prov. S. American 1956 (Guyana)	PRPF	IN
Prov. S. American 1956 (Peru)	PRPG	IN
Prov. S. American 1956 (Venezuela)	PRPH	IN
Prov. S. American 1956 (Mean value: Bolivia, Chile, Colombia,	PRPM	IN
Ecuador, Guyana, Peru, & Venezuela)		
Point 58 Mean Solution (Burkina Faso and Niger)	РТВ	CD
Pointe Noire 1948	PTN	CD
Pulkovo 1942 (Russia)	PUK	KA
Puerto Rico (Puerto Rico and Virgin Islands)	PUR	CC
Provisional South Chilean 1963: see code HIT		
Qatar National (Qatar)	QAT	IN
Qornoq (South Greenland)	QUO	IN
Rauenberg (Berlin, Germany)	RAU	BR
Reconnaissance Triangulation, Morocco	REC	CG
Reunion 1947	REU	IN
RT90, Stockholm, Sweden	RTS	BR
Revised Nahrwan: see code NAX		
Rome 1940: see codes MOD, MOD1		
Santo (DOS) 1965 (Espirito Santo Island)	SAE	IN
South African (South Africa)	SAF	CD
Sainte Anne I 1984 (Guadeloupe)	SAG	
South American 1969	SAN	SA
South American 1969 (Argentina)	SANA	SA

South American 1969 (Bolivia)	SANB	SA
South American 1969 (Bolivia) South American 1969 (Brazil)	SAND SANC	SA
South American 1969 (Brazil) South American 1969 (Chile)	SANC SAND	SA
		SA
South American 1969 (Columbia) South American 1969 (Ecuador)	SANE	SA
	SANF	SA
South American 1969 (Guyana)	SANG	
South American 1969 (Paraguay)	SANH	SA
South American 1969 (Peru)	SANI	SA
South American 1969 (Baltra, Galapagos Islands)	SANJ	SA
South American 1969 (Trinidad and Tobago)	SANK	SA
South American 1969 (Venezuela)	SANL	SA
South American 1969 (Mean value: Argentina, Bolivia, Brazil,	SANM	SA
Chile, Columbia, Ecuador, Guyana, Paraguay, Peru, Trinidad		
and Tobago, and Venezuela) Sao Braz (Sao Miguel, Santa Maria Islands, Azores)	SAO	IN
		IN
Sapper Hill 1943 (East Falkland Islands)	SAP	
Schwarzeck (Namibia)	SCK SCA	BN
Soviet Geodetic System 1985 Soviet Geodetic System 1990	SGA	SG SG
	SGB	
Selvagem Grande 1938 (Salvage Islands)	SGM	IN
Astro DOS 71/4 (St. Helena Island)	SHB	IN
Sierra Leone 1960	SIB	CD
South Asia (Southeast Asia, Singapore)	SOA	FA
S-42 (Pulkovo 1942)	SPK	KA
St. Pierre et Miquelon 1950	SPX	CC
Stockholm 1938 (Sweden)	STO	BR
Sydney Observatory, New South Wales, Australia	SYO	CB
SE Base (Porto Santo): see code POS		
S-JTSK: see code CCD	(T) 4 N	DI
Tananarive Observatory 1925	TAN	IN
Tananarive Observatory 1925, with Zero Meridian Paris	TAN1	IN
Tristan Astro 1968 (Tristan da Cunha)	TDC	IN
Timbalai 1948 (Brunei and East Malaysia - Sarawak and Sabah)	TIL	EB
Timbalai 1968	TIN	BR
Tokyo	TOY	BR
Tokyo (Japan)	TOYA	BR
Tokyo (Korea)	ТОҮВ	BR
Tokyo (Okinawa)	TOYC	BR
Tokyo (Mean value: Japan, Korea, and Okinawa)	TOYM	BR
Trinidad 1903	TRI	CA
Astro Tern Is. 1961 (Tern Island, Hawaii)	TRN	IN
Undetermined or Unknown (see Note 1)	UND	~~~
Voirol 1875	VOI	CG
Voirol 1875 with Zero Meridian Paris	VOI1	CG
Viti Levu 1916: see code MVS		
Wake Island Astro 1952	WAK	IN
World Geodetic System 1960	WGA	WS
World Geodetic System 1966	WGB	WC
World Geodetic System 1972	WGC	WD
World Geodetic System 1984	WGE	WE
Wake-Eniwetok 1960: see code ENW		
Yacare (Uruguay)	YAC	IN
Zanderij (Surinam)	ZAN	IN
Other Known Datum	ZYX	

Note 1. In the case of an unknown or unspecified datum, it is potentially dangerous to assume a default of WGS 84. Unless the application is small-scale mapping and the zero meridian is known to be Greenwich, such an assumption could cause significant positioning errors.

Vertical Datum Reference	Code
Geodetic (see Note 1)	GEOD
Name of a gravity-related surface (see Note 2)	MSL
Examples: Mean Sea Level Singapore	
EGM96 Model Geoid	

Note 1. In the geodetic case, elevations in the dataset are referenced to the ellipsoid of the specified geodetic datum, which means they are ellipsoidal heights.

Note 2. In the case of a gravity-related surface, elevations in the dataset are referenced to:

<u>Mean Sea Level</u>, an average level of the surface of the sea for all stages of the tide. Derived from localised measurements of the sea surface over a given period of time, using one or more tide gauges (example: Mean Sea Level Singapore).

OR

<u>Geopotential Model</u>, a mathematically-defined surface which closely models mean sea level (example: EGM96 Model Geoid).

Sounding Datum	Code
Approximate Lowest Astronomical Tide	ALAT
Approximate Mean Low Water Springs	AMLS
Approximate Mean Low Water Tide	AMLT
Approximate Mean Low Water	AMLW
Approximate Mean Sea Level	AMSL
Chart Datum (Unspecified)	CD
Equinoctial Spring Low Water	ESLW
Highest Astronomical Tide	HAT
Higher High Water Large Tide	HHLT
Highest Normal High Water	HNHR
Higher High Water	HRHW
Highest High Water	HTHW
High Water	HW
High Water Springs	HWS
International Great Lakes Datum 1985	IGLD
Indian Spring High Water	ISHW
Indian Spring Low Water	ISLW
Lowest Astronomical Tide	LAT
Local Datum (arbitrary datum defined by local harbour authority)	LD
Lower Low Water Large Tide	LLLT

Lowest Low Water Springs	LLWS
Lower Low Water	LRLW
Lowest Low Water	LTLW
Low Water	LW
Low Water Springs	LWS
Mean Higher High Water	MHHW
Mean Higher Water	MHRW
Mean High Water	MHW
Mean High Water Neaps	MHWN
Mean High Water Springs	MHWS
Mean Lower Low Water Springs	MLLS
Mean Lower Low Water	MLLW
Mean Low Water	MLW
Mean Low Water Neaps	MLWN
Mean Low Water Springs	MLWS
Mean Sea	MSL
Mean Tide Level	MTL
Nearly Lowest Low Water	NLLW
Neap Tide	NT
Spring Tide	ST
VALUE INTENTIONALLY LEFT BLANK	VILB
Other Known Sounding Datum	ZYX
Unknown	ZZZ

Individual sounding datums are defined in the IHO Hydrographic Dictionary.

6.3 Projection Codes and Parameters

Table 6-5 provides the allowable projections and their codes and parameters for the Dataset Map Projection Group. These codes and parameters are necessary for conversion of geographic coordinates to/from grid coordinates (as used on a map). Also needed are Easting False Origin and Northing False Origin, as well as the geodetic datum.

The abbreviation "*Alt*." is used to denote alternative codes originating from DIGEST 1.2, which are included for backward compatibility.

Note the presence of a special code ZY for other known projection.

Projection	Proj'n	Parameters			
	Code	1	2	3	4
Albers Equal-Area Conic	AC	Longitude of	Std. Parallel	Std. Parallel	Latitude of
		Origin	Nearer to	Farther from	Origin (see
			Equator	Equator	Note 5)
(Lambert) Azimuthal	AK	Longitude of	Latitude of	-	-
Equal-Area		Proj. Origin	Proj. Origin		
Azimuthal Equidistant	AL	Longitude of	Latitude of	-	-
		Proj. Origin	Proj. Origin		
Bonne	BF	Longitude of	Latitude of	Scale Factor at	-
		Proj. Origin	Proj. Origin	Proj. Origin	

Table 6-5 Projection Codes and Parameters

Equidistant Conic with 1 Standard Parallel	CC	Longitude of Central Meridian	Latitude of Proj. Origin	Latitude of Standard Parallel	-
Equirectangular (La Carte Parallélogrammatique)	СР	Longitude of Central Meridian	Latitude of True Scale	Radius of Sphere (see Note 2)	-
Cassini-Soldner	CS	Longitude of Proj. Origin	Latitude of Proj. Origin	-	-
Cylindrical Equal Area: <i>see code LI</i>					
Eckert VI	ED	Longitude of Central Meridian	Radius of Sphere (see Note 2)	-	-
Eckert IV	EF	Longitude of Central Meridian	Radius of Sphere (see Note 2)	-	-
Equidistant Conic: see codes CC, KA					
Equirectangular: see code CP					
French Lambert: <i>see code MJ</i>					
Gnomonic	GN	Longitude of Proj. Origin	Latitude of Proj. Origin	-	-
General Vertical Near- Side Perspective: <i>see</i> <i>code VX</i>					
Hotine Oblique Mercator based on 2 Points	HX	Scale Factor at Proj. Origin	Latitude of Proj. Origin	Longitude of 1st Point defining Central Line	Latitude of 1st Point defining Central Line
(Note the 5th and 6th Parameters shown right.)		Longitude of 2nd Point defining Central Line	Latitude of 2nd Point defining Central Line	-	-

Hotine Oblique Mercator (RSO): <i>see code RS</i>					
Equidistant Conic with 2 Standard Parallels	KA	Longitude of Central Meridian	Latitude of Origin (see Note 5)	Latitude of Standard Parallel Nearer to Equator	Latitude of Standard Parallel Farther from Equator
Laborde	LA	Longitude of Proj. Origin	Latitude of Proj. Origin	Scale Factor at Proj. Origin	Azimuth at Origin of Axis of constant scale
Lambert Conformal Conic (see Note 1)	LE	Longitude of Origin	Std. Parallel Nearer to Equator	Std Parallel Farther from Equator	Latitude of Origin (see Note 5)
Cylindrical Equal Area	LI	Longitude of Central Meridian	Latitude of Origin	-	-
Lambert Equal-Area Meridional	LJ	Longitude of Central Meridian	Latitude of Proj. Origin	-	-
Lambert Azimuthal Equal-Area: <i>see code AK</i>					
Mercator	MC	Longitude of Central Meridian	Latitude of True Scale	Latitude of Reference Origin (see Note 6)	-
Miller Cylindrical	MH	Longitude of Central Meridian	Radius of Sphere (see Note 2)	-	-
French Lambert	MJ	Longitude of Proj. Origin	Latitude of Proj. Origin	Scale Factor at Proj. Origin	-
Mollweide	MP	Longitude of Central Meridian	Radius of Sphere (see Note 2)	-	-
New Zealand Map Grid	NT	Longitude of Proj. Origin	Latitude of Proj. Origin	-	-
Oblique Mercator	OC	Longitude of Reference Point on Great Circle	Latitude of Reference Point on Great Circle	Azimuth of Great Circle at Reference Point	Radius of Sphere (see Note 2)
Orthographic	OD	Longitude of Proj. Origin	Latitude of Proj. Origin	Radius of Sphere (see Note 2)	-
Oblique Stereographic: <i>see code SD</i>					
Polar Stereographic	PG	Central Meridian (Longitude straight down from Pole on map)	Latitude of True Scale	-	-
Polyconic	РН	Longitude of Central Meridian	Latitude of Proj. Origin	-	-

DIGEST Part 3 Edition 2.1, September 2000 6 - Geodetic Codes

Hotine Oblique Mercator (Rectified Skew Orthomorphic)	RS Alt: RB	Longitude of Proj. Origin	Latitude of Proj. Origin	Azimuth East of North for Central Line (Skew X-Axis) at Proj. Origin	Scale Factor at Proj. Origin
Robinson	RX	Longitude of Central Meridian	Radius of Sphere (see Note 2)	-	-
Sinusoidal	SA	Longitude of Central Meridian	Radius of Sphere (see Note 2)	-	-
Oblique Stereographic	SD	Longitude of Origin	Latitude of Origin	Scale Factor at Origin	-
Space Oblique Mercator	SX	Application Code (see Note 3)	Vehicle Number (see Note 4)	Orbital Path Number (see Note 4)	
Transverse Mercator	ТС	Longitude of Central Meridian	Central Scale Factor	Latitude of Origin (see Note 5)	-
Transverse Cylindrical Equal Area	TX	Longitude of Central Meridian	Latitude of Origin	Scale Factor along Central Meridian	-
Van der Grinten	VA	Longitude of Central Meridian	Radius of Sphere (see Note 2)	-	-
General Vertical Near- Side Perspective	VX	Longitude of Proj. Origin	Latitude of Proj. Origin	Height of Perspective Point above Surface (in metres)	-
Other Known Projection	ZY	-	-	-	-

Note 1. The parameters of the Lambert Conformal Conic projection are based on the version derived from 2 Standard Parallels. Where the projection is derived from a single standard parallel with a scale factor, data producers need to compute the equivalent parameters for the 2-standard-parallel case.

Note 2. This radius can be omitted if the chosen sphere has the same surface area as the chosen ellipsoid. The radius R which has that property may be derived from the ellipsoid parameters as follows:

Compute e^2 and e from $e^2 = 2*f - f^2$. $Qp = 1 + ((1-e^2)/(2*e))*Ln((1-e)/(1+e))$. R = a*Sqrt(Qp/2).

Note 3. Application Code:

1 = "Landsat, USGS equations".2 = "Landsat, EOSAT equations".(Other values to be added as and when required.)

Note 4. These parameters combined with the Application Code determine the mathematical parameters used in the projection.

Note 5. The Origin included here is the point where Easting False Origin and Northing False Origin are applied, rather than the Projection Origin.

Note 6. This parameter is the latitude where Northing False Origin is defined. If it is the Equator, which is the usual and recommended choice, it can be omitted.

6.4 Grid Codes

Table 6-6 provides the allowable grids and their codes for the Grid System field.

To assist the process of matching datums and projections to grids, datum codes and projection codes are shown in the last 2 columns.

It should be noted that some of the entries are **grid categories**, that is to say there is more than one possible grid. This can be due to more than one possible datum or more than one possible zone, or indeed both. In a small number of cases, a grid category covers zones which use different projections. Grid categories are marked with an asterisk (*).

In the context of a DIGEST dataset, the possible ambiguity of a grid category is resolved when the datum, projection and the values of the projection parameters are specified. Zone number may also be specified to improve identification.

Note the presence of special code MS for other known grid.

Grid Description	Grid	Datum	Proj'n
Sind Description	Code	Code	Code
Aden Zone	AD		LE
Afghanistan Gauss-Krüger Grid	AF		TC
Air Defense Grid	AG		
Air Support Grid	AI		
Alabama Coordinate System * (see Note 2)	AJ		TC
Alaska Coordinate System * (see Notes 1 and 2)	AK		
Algeria Zone *	AL		MJ
Albania Bonne Grid	AM		BF
Alpha-Numeric (Atlas) Grid	AN		
Arbitrary Grid	AO		
American Samoa Coordinate System * (see Note 2)	AP		LE
Argentine Gauss-Krüger Conformal Grid *	AQ		TC
Artillery Referencing System	AR		
Arizona Coordinate System * (see Note 2)	AS		TC
Map Grid of Australia 1994 (MGA94) *	AT	GDS	TC
Australia Belt *	AU		TC
Arkansas Coordinate System * (see Note 2)	AV		LE
Australian Map Grid *	AW		TC
Azores Gauss Conformal Grid	AX	LOC	TC
Azores Zone	AZ	LOC	LE
Austria Gauss-Krüger Grid: see code KA			
Baku 1927 Coordinate System	BA		
Bavaria Soldner Coordinate System	BB		
Belgium Lambert Grid *	BC		
Baltic Region Transverse Mercator Grid	BD	EUT	TC

Table 6-6 Grid Codes

Belgium Bonne Grid	BE		BF
Brazil Gauss Conformal Grid *	BF		TC
Soldner-Berlin (Müggelberg) Grid	BL	RAU	
Borneo Rectified Skew Orthomorphic Grid *	BO		RS
British West Indies Grid *	BW		TC
British Cassini Grid: see code CW			
Bulgaria Gauss-Krüger Grid: see code KB			
California Coordinate System * (see Note 2)	СВ		LE
Canada British Modified Grid	CD		
Ceylon Belt (Transverse Mercator)	CE	IND	TC
Canary Islands (Spanish Lambert Grid)	CF		
Chile Gauss Conformal Grid *	CG		TC
China Belt *	СН		TC
Canary Islands Zone	CI		LE
China Lambert Zone	CJ		LE
Colorado Coordinate Zone * (see Note 2)	СК		LE
Connecticut Coordinate System * (see Note 2)	CM		LE
Caspian Zone	CN		LE
Costa Rica Lambert Grid		OCO	LE
Crimea Grid			LE
Crete Zone			LE
Cuba Lambert Grid *	CR	NAS	LE
Caucasus Zone		NAS	LE
Cape Verde Islands Zone		INAN	LE
British Cassini Grid *	CW	OCD	
		OGB	CS
Czechoslovak Uniform Cadastral Coordinate System			CC
Cyprus Grid *	CY	LIED	CS
Czechoslovak Military Grid	CZ	HER	
Cape Verde Peninsula Grid: see code DK			
Colombia Gauss Conformal Grid: see code KF		apr	
Danube Zone	DA	GRK	LE
Dahomey Belt	DB		
Denmark General Staff Grid	DC		
Delaware Coordinate System * (see Note 2)	DD		TC
Dominican Lambert Grid	DE		LE
Denmark Geodetic Institute System 1934	DJ		
Cape Verde Peninsula Grid	DK		
East Africa Belt *	EA		TC
English Belt	EB		TC
Egypt Gauss Conformal Grid *	ED		TC
El Salvador Lambert Grid	EE		LE
Estonian Grid	EF		
Estonia Lambert Conformal Grid	EL	EUT	LE
Hungarian Unified National Mapping System (EOTR)	EO	HUY	TC
Egypt Purple Belt	EP		TC
Egypt Red Belt *	ER		TC
Egypt 35 Degree Belt	ET	OEG	
Fernando Poo Gauss Grid	FA		
Fiji Grid	FB		
Florida Coordinate System * (see Notes 1 and 2)	FC		
French Bonne Grid	FD		BF
French Guiana Gauss Grid	FE		TC
French Somaliland Gauss-Laborde Grid	FF		
French Indochina Grid	FI		

Franz Josef Land Zone	FJ		LE
French Lambert Grid *	FL		MJ
Formosa (Taiwan) Gauss-Schreiber Coordinate System	FO		
French Equatorial Africa Grid	FS		
Finland Gauss-Krüger Grid: see code KF			
Gabon Belt *	GA		TC
Gauss-Boaga Grid (Transverse Mercator)	GB	EUR	TC
Gabon Gauss Conformal Grid	GC		TC
Geographic Reference System (GEOREF) *	GE		
Guadeloupe Gauss-Laborde Grid	GF		
Colombia Gauss Conformal Grid	GG	BOO	TC
Sweden Gauss-Hannover Grid	GH		TC
Georgia Coordinate System * (see Note 2)	GI		TC
Gauss-Krüger Grid (Transverse Mercator) *	GK		TC
Greece Azimuthal Grid	GL		10
German Army Grid (DHG) *	GN		TC
Ghana National Grid	GO		TC
Greece Bonne Grid	GP		BF
Greece Conical Mecklenburg Coordinates	GQ		LE
Greece Conical Mecklenburg Coordinates Greece Conical Mecklenburg Coordinate (New Numbering)	GQ GR		LE
Greenland Lambert Grid		NAC	
	GT	NAS	LE
Guinea Zone	GU		LE
Guam Coordinate System	GV		LE
Guatemala Lambert Grid	GW	LOC	LE
Guyana Transverse Mercator Grid	GY	LOC	TC
German Gauss-Krüger Grid: see code KG			
Haiti Lambert Grid	HB		LE
Hawaii Coordinate System * (see Note 2)	HC		TC
Hawaii Grid	HD		
Honduras Lambert Grid	HE		LE
Hong Kong New System Cassini Grid	HF	HKO	CS
Hungary Stereographic Grid	HG	LOC	
Hong Kong Colony Grid	HR		
Hungarian Unified National Mapping System: see code EO			
Idaho Coordinate System * (see Note 2)	IA		TC
Illinois Coordinate System * (see Note 2)	IB		TC
Indiana Coordinate System * (see Note 2)	IC		TC
Indonesia Mercator Grid	ID		MC
Indonesia Polyhedric Grid *	IE		
Iowa Coordinate System * (see Note 2)	IF		LE
Ivory Coast Azimuthal Grid	IG		
Irish Cassini Grid	IH	EUR	CS
Ivory Coast Belt	IJ		
Irish Transverse Mercator Grid	IK	IRL	TC
Iceland New Lambert Zone	IL	HJO	LE
India Zone *	IN		LE
Iberian Peninsula Zone	IP		LE
Iraq Zone *	IQ		LE
Iraq National Grid	IR		TC
Italy Zone *	IT		LE
Ivy - Found on an HA in Marshall Islands	IY		
Iceland Zone	IZ	HJO	LE
Jamaica Foot Grid	JA		LE
Japan Plane-Rectangular Coordinate System	JB		

Japan Gauss-Schreiber Grid	JC		
Jamaica National Grid (metric)	JM		LE
Johore Grid	JO		CS
Austria Gauss-Krüger Grid	JO KA		TC
Bulgaria Gauss-Krüger Grid	KA KB		TC
	KB KC		IC
Katanga Grid			LE
Kansas Coordinate System * (see Note 2)	KD		LE
Kentucky Coordinate System * (see Note 2)	KE		LE
Finland Gauss-Krüger Grid	KF		TC
German Gauss-Krüger Grid	KG		TC
Kenya Colony Grid	KH		CS
Korea Gauss-Schreiber Coordinate System	KJ		
Louisiana Coordinate System * (see Note 2)	KK		LE
Lithuania Gauss-Krüger Grid	KL		TC
Kwantung Province Grid	KN		
Turkey Gauss-Krüger Grid	KT		TC
Kwangsi Province Grid	KW		
Luxembourg Gauss-Krüger Grid	KX	EUR	TC
Lambert Conformal Conic Grid *	LC		
Latvia Coordinate System	LD		
Levant Zone	LE	EUR	MJ
Levant Stereographic Grid	LF		
Liberia Rectified Skew Orthomorphic Grid	LG		RS
Libya Zone	LI	EUR	LE
Lithuanian LKS-94 Grid	LK	EUT	TC
Sirte (Libya) Lambert Grid	LL		LE
Lithuania Gauss-Krüger Grid: see code KL			
Louisiana Coordinate System: see code KK			
Luxembourg Gauss-Krüger Grid: see code KX			
Malaya Grid *	MA		CS
Malta Belt	MB	LOC	TC
Maldive-Chagos Belt	MC		TC
Madiera Zone	MD		LE
Mediterranean Zone *	ME		LE
Maine Coordinate System * (see Note 2)	ME		TC
Malaya Rectified Skew Orthomorphic (Yard) Grid	MG	KEA	RS
Martinique Gauss Grid	MH		TC
Maryland Coordinate System * (see Note 2)	MI		LE
Massachusetts Coordinate System (see Note 2)	MJ		LE
Mexican Lambert Grid	MK		LE
Michigan Coordinate System * (see Notes 1 and 2)	ML		
Mecca-Muscat Zone	MM		LE
Minnesota Coordinate System * (see Note 2)	MN		LE
Madagascar Grid (Laborde)	MN	TAN	
	MO MP	TAN	LA
Mississippi Coordinate System * (see Note 2)			TC
Morocco Zone *	MQ		MJ
Other Known Grid	MS	-	TC
Missouri Coordinate System * (see Note 2)	MT		TC
Mauritius Zone	MU		LE
Montana Coordinate System * (see Note 2)	MV		LE
Mozambique Lambert Grid	MW		LE
Mozambique Polyconic Grid	MX		PH
Map Grid of Australia 1994: see code AT			
Northwest Africa Zone	NA	MER	LE

	1.170		ma
New Jersey Coordinate System * (see Note 2)	NB		TC
Nigeria Colony Belt *	NC		TC
National Grid of Great Britain	ND	OGB	TC
Northern European Zone *	NE		LE
Nebraska Coordinate System * (see Note 2)	NF		LE
Numeric Grid	NG		
New Hampshire Coordinate System * (see Note 2)	NH		TC
Niger Zone	NI		LE
Netherlands Stereographic Grid (Old Numbering)	NJ	PDM	
North Korea Gauss-Krüger Grid	NK		TC
Netherlands Stereographic Grid (New Numbering)	NL	PDM	
Netherlands East Indies Equatorial Zone British Metric Grid (Lamber			MC
*	,		
Nord de Guerre Zone *	NO		MJ
New Mexico Coordinate System * (see Note 2)	NN		TC
Nevada Coordinate System * (see Note 2)	NP		TC
New Sierra Leone Colony Grid *	NQ	1	
New York Coordinate System * (see Notes 1 and 2)	NR		
Netherlands East Indies Southern Zone	NS		LE
New Zealand Map Grid (NZMG)	NT	GEO	NT
Nicaragua Lambert Grid *	NU	020	LE
Niger Belt	NV		LE
North Carolina Coordinate System * (see Note 2)	NW		LE
North Dakota Coordinate System * (see Note 2)	NX		LE
Netherlands East Indies Equatorial Zone U.S. Yard Grid *	NY		LE
New Zealand Belt *	NZ		TC
Northern Malaya Grid: see code OA	112		10
Norway Gauss-Krüger Grid: see code OB			
Northern Malaya Grid	OA		
Norway Gauss-Krüger Grid *	OB	OSL	TC
Ohio Coordinate System * (see Note 2)	OD	OSL	LE
Oklahoma Coordinate System * (see Note 2)	OE		LE
		NAS	LE
Orange Report Net	OR	INAS	LE
Oregon Coordinate System * (see Note 2) Palestine Belt *	OS		
	PA		TC
Panama Lambert Grid	PB		LE
Palestine Civil Grid (Cassini) *	PC		CS
Paraguay Gauss-Krüger Grid	PD		TC
Peiping Coordinate System of 1954	PE		
Pennsylvania Coordinate System * (see Note 2)	PF		LE
Polish PSWG 1992 Grid	PG	EUT	TC
Peru Polyconic Grid	PI		PH
Philippine Plane Coordinate System	PJ	LUZ	PH
Poland Gauss-Krüger Grid	PK		TC
Poland Quasi-Stereographic Grid	PL		
Philippine Polyconic Grid	PP	APL	PH
Portugal Bonne Grid, Old	PQ		BF
Portugal Bonne Grid, New	PR		BF
Portugal Gauss Grid	PS	LIS	TC
Puerto Rico & Virgin Islands Coordinate System *	PT		LE
Puerto Rico Lambert Grid	PU		LE
Pulkovo Coordinate System of 1932: see code RT			
Qatar Cassini Grid	QA		CS
Qatar Peninsula Grid (or Qatar National Grid (TM))	QU	QAT	TC

Russian Belt *	RB	EUR	TC
Reunion Gauss Grid	RC	Lon	TC
Rhode Island Coordinate System * (see Note 2)	RD		TC
Romania Bonne Grid	RE		BF
Soviet Coordinate System of 1942 *	RF	PUK	TC
Romania Lambert-Cholesky Grid	RH	IUK	10
Rikets National Grid *	RK	STO	TC
Romania Stereographic Grid	RI	510	SD
Pulkovo Coordinate System of 1932	RT		50
South Africa Belt (yards) *	SA		TC
Senegal Gauss Conformal Grid (Belt)	SB		TC
South Africa Coordinate System (South Africa Belt (English feet)) *	SD		TC
Senegal Belt	SE		TC
South Carolina Coordinate System * (see Note 2)	SF		LE
Sahara Zone	SH		LE
South Dakota Coordinate System * (see Note 2)	SI		LE
South Libya Zone	SJ		LE
Sarawak Grid	SK		CS
Spain Lambert Grid	SL	EUR	LE
Southern New Guinea Grid *	SN	LUK	LE
South Georgia Lambert Grid	SQ		LE
South Syria Lambert Grid	SR		LE
Spanish North-Morocco Lambert Grid	SK		LE
Svalbard Gauss-Krüger Grid	SV		TC
Svobodny 1935 Coordinate System	SV		IC
Seychelles Belt	SY		TC
Spitzbergen Zone	SI		LE
Sirte (Lybia) Lambert Grid: see code LL	52		
Soldner-Berlin (Müggelberg) Grid: see code BL			
Soviet Coordinate System of 1942: see code RF			
Sweden Gauss-Hannover Grid: see code GH			
Switzerland Bonne Grid: see code WB			
Switzerland Conformal Oblique Cylindrical Grid: see code WC			
Tanganyika Territorial Grid	TA		
	TA TB		
Tashkent 1875 Coordinate System	ТС		LE
Tennessee Coordinate System * (see Note 2) Texas Coordinate System * (see Note 2)	TD		TC
		MDT	CS
Tobago Grid Trinidad Grid	TE TF	MDT	CS
			CS
Trucial Coast Cassini Grid	TG		TC
Trucial Coast Transverse Mercator Grid	TH		
Turkey Bonne Grid Tunisia Zone *	TI		BF
	TN		MJ
Turkey Gauss-Krüger Grid: see code KT	TIA		CS
Uganda Cassini Coordinate System *	UA		CS
Unidentified Grid	UB		TC
Uruguay Gauss-Krüger Grid	UC		TC
Utah Coordinate System * (see Note 2)	UD		LE
Universal Polar Stereographic System *	UP		PG
(Note: 61 is recommended Zone Number for Northern Polar Zone, -61			
for Southern Polar Zone)	IIC	NTAC	
U.S. Polyconic Grid System	US	NAS	PH

Universal Transverse Mercator *	UT		TC
(Note: 1 to 60 are recommended Zone Numbers for Northern Zones, -1			
to -60 for Southern Zones)			
Vermont Coordinate System * (see Note 2)	VA		TC
Virginia Coordinate System * (see Note 2)	VB		LE
Venezuela Modified Lambert Grid	VE		
Vietnam Azimuthal Grid	VI		
Voirol 60 Zone *	VL	NSD	MJ
West Malaysia Rectified Skew Orthomorphic (Metric) Grid	WA		RS
Switzerland Bonne Grid	WB		BF
Switzerland Conformal Oblique Cylindrical Grid	WC		OC
West Virginia Coordinate System *	WD		LE
Wisconsin Coordinate System *	WE		LE
Wyoming Coordinate System *	WF		TC
Washington Coordinate System * (see Note 2)	WH		TC
World Polyconic System	WP		PH
Yugoslavia Gauss-Krüger Grid (Not Reduced)	YA	HER	TC
Yugoslavia Reduced Gauss-Krüger Grid	YG	HER	TC
Yunnan Province Grid	YU		

* grid category, covering more than one possible grid

Note 1. In this case, not all zones use the same projection.

Note 2. For US State Plane Coordinate Systems, the recommended grid zone number is the 4-figure code given by (a) FIPS PUB 70-1 for grids on North American Datum 1927 and (b) NOAA Manual NOS NGS 5 for grids on North American Datum 1983.

7 UNITS OF MEASURE CODES

DIGEST defines units of measurement as referenced by ISO 1000 "SI units and recommendations for the use of their multiples and of certain other units". However, there are certain units outside the SI (Système Internationale), some of which are recognized by International Committee for Weights and Measures (CIPM), which need to be included in DIGEST because of their practical importance, i.e. occurrence in DGI datasets. These units have their codes enclosed by parentheses ().

When a compound unit is formed by multiplication of two or more units, it can be indicated in one of the following ways:

 $N \cdot m$ or N m

DIGEST preference is " $N \cdot m$ " to avoid misinterpretation of the blank space.

When a compound unit is formed by dividing one unit by another, it can be indicated in one of the following ways:

 \underline{m} or m/s or m s⁻¹

The DIGEST preference is "m/s".

Table 10-1 lists the SI, and commonly recognized (shown in parentheses), units of measure which are most likely to occur within a DIGEST dataset, and their codes (abbreviations) for the various Units of Measure fields of the Data Set Parameter Group. They also are referenced in Part 4 - Annex B (Attribute and Value Codes).

Units	Code
LENGTH	
Micrometres	UM
Millimetres	MM
Centimetres	СМ
Decimetres	DM
Metres	М
Kilometres	KM
Inches	(IN)
Feet	(FT)
Yards	(YD)
Fathoms	(FM)
Fathoms and Feet	(FF)
Statute Miles	(MI)
Nautical miles	(NM)

DIGEST Part 3 Edition 2.1, September 2000 7 - Units of Measure

TIME	
Seconds	S
Minutes	MIN
Hours	Н
Days	D
SPEED	
Metres per Second	M/S
Kilometres per Hour	KM/H
Miles per Hour	(MPH)
Knots	(KNOT)
AREA	
Square metres	(M2)
Square kilometres	(KM2)
Hectares	(HA)
ANGULAR MEASUREMENT	
Mils	ML
Milliseconds (of arc)	(MSC)
Seconds (of arc)	(SEC)
Minutes (of arc)	(MA)
Degrees (of arc)	(DEG)
WEIGHT (MASS)	
Kilograms	KG
Kips (Kilopounds)	(KIP)
PRESSURE	
Millibars	MBAR
Hectopascals	HPA
ELECTRICITY	
Volts	V
Kilovolts	KV
Watts	W
Megawatts	MW
Gigawatts	GW
Amperes	А
Hertz	HZ
Kilohertz	KHZ
Megahertz	MHZ
MISCELLANEOUS	
Percent	(%)
Unit	(UNIT)

Note: Codes enclosed in parentheses indicate non-ISO 1000 units. The parentheses themselves do not form part of the code.

8 USE OF CIE VALUES

CIE is an international colour system for defining colour produced by the "Commission Internationale de l'Eclairage". A number of systems for identifying colours, and the difference between colours, have been promulgated by the CIE. These are all based on measuring the Tristimulus values (Red, Green and Blue intensities) of a colour relative to a standard white. DGIWG has chosen the CIE system featuring the coordinates (x,y,Y) as described in Table 8-1 and illustrated in Figure 8-1. This is also the method used in the [US] DoD Standard Printing Color Catalog.

Representation	Description	Comment
RGB intensity	Red, Green, Blue	Sometimes called spectral primaries.
values R,G,B.	intensities, relative to	
	a standard white.	
CIE stimuli X,Y,Z.	CIE primaries chosen	There is a one-to-one relationship between
	such that Y is the	(X,Y,Z) and (R,G,B) . In fact, there are
	reflectance.	constants K_1 to K_9 (which depend on
		physical factors like illuminants &
		temperatures) such that:
		$X = K_1 * R + K_2 * G + K_3 * B,$
		$Y = K_4 * R + K_5 * G + K_6 * B,$
		$Z = K_7 * R + K_8 * G + K_9 * B.$
CIE Coefficients	$\mathbf{x} = \mathbf{X} / (\mathbf{X} + \mathbf{Y} + \mathbf{Z}),$	The CIE Chromaticity Chart, which plots
x,y,Y.	y = Y/(X+Y+Z);	x & y, shows the relative values of X,Y,Z
	Y is reflectance.	(which are in the same ratio as x,y,1-x-y).

Of the other two systems considered, the CIELUV system is more applicable to the TV industry, and the CIELAB system, while providing finer discrimination between similar colours, is unnecessarily complex for the requirements of raster images. It is only necessary to uniquely identify what a colour should be; any difference in hue from the colour printed or captured by the scanner is irrelevant.

Defining accurately and consistently the colours that should appear in the raster image of a map, irrespective of any changes in colour introduced by both the printing and scanning processes, should not be difficult. In most cases the map specification defines what the various colours used in its production should be by reference to a standard colour chart or catalogue. An example of this is the DoD Standard Printing Color Catalog, which as well as printing sample colours also gives the CIE Values for that colour. Where the standard colour catalogue referenced by a map specification does not give the CIE Values, then these may be obtained by:

- identifying the CIE Values for the catalogue in accordance with the DoD Operators Manual for the MC&G Standard Printing Color Identification System, which defines the standard white to be used and the method to be adopted; or - identifying the closest approximation to each colour in the DoD Standard Printing Color Catalog, and assigning those CIE Values to the local standard colour catalogue. This method should only be used where the precise definition of a colour is not critical (i.e. the map series is only produced and/or scanned by one agency).

Defining what a map colour should be according to a recognized standard will ensure that:

- the colour can be readily identified by the receiving agency or user;
- precise consistency of colour can be achieved between samples of the same raster product produced not only by the same agency, but by different agencies; and
- users of applications will not be distracted by changes in colour and luminosity (which is worse) when traversing map boundaries.

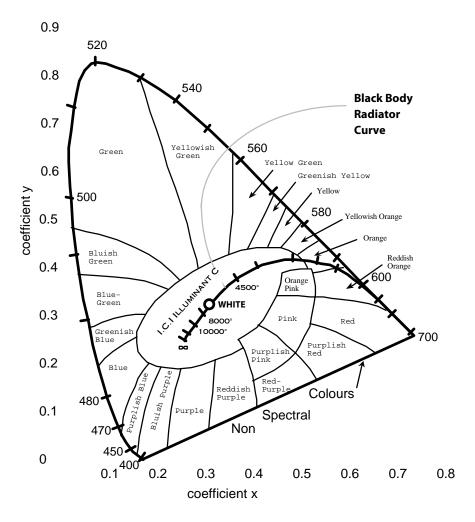


Figure 8-1 CIE Chromaticity Chart

DIGEST Part 3 Edition 2.1, September 2000 8 - Use of CIE Values

Notes:

- 1. The numbers round the rim of the graph are the values of the dominant wavelength in nanometres. The straight line between the values 400 and 700 consists of non-spectral colours.
- 2. The alignment WHITE is usually chosen to be that white radiated by a body at a given temperature, somewhere along the Black Body Radiator curve. In the particular case shown above, the standard illuminant ringed as the alignment white is actually Illuminant C with CIE Chromaticity Coefficients $x_w = 0.310$ and $y_w = 0.316$.

9 DIGITAL GEOGRAPHIC DATA VOLUME TRANSMITTAL FORM

Par	t 1. – National Organizations							
1.	SENDER:	_ 2.	. ADDRESSEE:					_
		 						-
3.	SECURITY CLASSIFICATION:		Т	S	С	R	U	
4.	SPECIAL HANDLING:							
Dat	e & Level of Downgrading:							
Bi c	or Multilateral agreement(s):							
Agr	reement between Country(s):							
Nar	ne / Signature:							_
Cre	ation Date:							
Par	t 2. – Data Exchange Specification	S						

DATA EXCHANGE FORM

5.a.	EXCHANGE MEDIA:
c	

Туре:	Spec:	
Mag. Tape:	Density:	
CD-ROM:	1.4 MB:	
3.5" Floppy:	1.2 MB	
5.25" Floppy:	720K:	
	Other:	
	4 mm	
	8 mm	
Cartridge	Other	
5.b. FORMATTING / COMPRESSION:		
Number of Cylinders:		
Number of Sectors:		

9 - Volume Transmittal Form

	Compression:		Yes:	No:						
Technique Used:										
6. EX	KCHANGE	SPECIFICAT	ION:							
		DIGEST Edition: Annex A ISO 8211: Annex B ISO 8824: Annex C VRF: Annex D IIF: Comments			Date:					
7. OF	PERATING	SYSTEM:								
		Unix: PC / MS - DO VAX / VMS Mac O/S Other:	System: DS	Version: Version: Version: Version: Version:						
8. READ / WRITE STATEMENT:Load										
9. VO	OLUME CO	ONTENTS:								
File No.	File Name	Area of Coverage	Data Structure	Product Type	Remarks	Size				
Part 3 Additional Information										
10. REMARKS:										
11.	11. ADDITIONAL INFORMATION:									

10 **BIBLIOGRAPHY**

Refer to the Bibliography in DIGEST Part 1.

DIGEST Part 3 Edition 2.1, September 2000 10 - Bibliography

[This page intentionally left blank]